[BB1988]Barzilai, J, and Borwein, J M. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 8 (1988), pp 141–148.
[BC2011]Bauschke, H H, and Combettes, P L. Convex analysis and monotone operator theory in Hilbert spaces. Springer, 2011.
[BC2015]Bot, R I, and Csetnek, E R. On the convergence rate of a forward-backward type primal-dual splitting algorithm for convex optimization problems. Optimization, 64.1 (2015), pp 5–23.
[BH2013]Bot, R I, and Hendrich, C. A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM Journal on Optimization, 23.4 (2013), pp 2541–2565.
[Bro1965]Broyden, C G. A class of methods for solving nonlinear simultaneous equations. Mathematics of computation, 33 (1965), pp 577–593.
[BV2004]Boyd, S, and Vandenberghe, L. Convex optimization. Cambridge university press, 2004.
[Che+2015]Cheng, A, Henderson, R, Mastronarde, D, Ludtke, S J, Schoenmakers, R H M, Short, J, Marabini, R, Dallakyan, S, Agard, D, and Winn, M. MRC2014: Extensions to the MRC format header for electron cryo-microscopy and tomography. Journal of Structural Biology, 129 (2015), pp 146–150.
[CP2011a]Chambolle, A and Pock, T. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision, 40 (2011), pp 120-145.
[CP2011b]Chambolle, A and Pock, T. Diagonal preconditioning for first order primal-dual algorithms in convex optimization. 2011 IEEE International Conference on Computer Vision (ICCV), 2011, pp 1762-1769.
[CP2011c]Combettes, P L, and Pesquet, J-C. Proximal splitting methods in signal processing. In: Bauschke, H H, Burachik, R S, Combettes, P L, Elser, V, Luke, D R, and Wolkowicz, H. Fixed-point algorithms for inverse problems in science and engineering, Springer, 2011.
[GNS2009]Griva, I, Nash, S G, and Sofer, A. Linear and nonlinear optimization. Siam, 2009.
[Hei+2016]Heide, F et al. ProxImaL: Efficient Image Optimization using Proximal Algorithms. ACM Transactions on Graphics (TOG), 2016.
[KP2015]Komodakis, N, and Pesquet, J-C. Playing with Duality: An overview of recent primal-dual approaches for solving large-scale optimization problems. IEEE Signal Processing Magazine, 32.6 (2015), pp 31–54.
[Kva1991]Kvaalen, E. A faster Broyden method. BIT Numerical Mathematics 31 (1991), pp 369–372.
[Lue1969]Luenberger, D G. Optimization by vector space methods. Wiley, 1969.
[Okt2015]Oktem, O. Mathematics of electron tomography. In: Scherzer, O. Handbook of Mathematical Methods in Imaging. Springer, 2015, pp 937–1031.
[PB2014]Parikh, N, and Boyd, S. Proximal Algorithms. Foundations and Trends in Optimization, 1 (2014), pp 127-239.
[Pre+2007]Press, W H, Teukolsky, S A, Vetterling, W T, and Flannery, B P. Numerical Recipes in C - The Art of Scientific Computing (Volume 3). Cambridge University Press, 2007.
[Ray1997]Raydan, M. The Barzilai and Borwein method for the large scale unconstrained minimization problem. SIAM J. Optim., 7 (1997), pp 26–33.
[Roc1970]Rockafellar, R. T. Convex analysis. Princeton University Press, 1970.
[Sid+2012]Sidky, E Y, Jorgensen, J H, and Pan, X. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm. Physics in Medicine and Biology, 57 (2012), pp 3065-3091.
[SW1971]Stein, E, and Weiss, G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971.
[Val2014]Valkonen, T. A primal-dual hybrid gradient method for non-linear operators with applications to MRI. Inverse Problems, 30 (2014).
[Du+2016]J. Duran, M. Moeller, C. Sbert, and D. Cremers. Collaborative Total Variation: A General Framework for Vectorial TV Models SIAM Journal of Imaging Sciences 9(1): 116–151, 2016.