

 Navigation

 	
 index

 	
 next |

 	odl

Operator Discretization Library Documentation

Operator Discretization Library (ODL) is a python library for fast prototyping focusing on (but not restricted to) inverse problems. ODL is being developed at KTH, Royal Institute of Technology.

The main intent of ODL is to enable mathematicians and applied scientists to use different numerical methods on real-world problems without having to implement all necessary parts from the bottom up. ODL provides some of the most heavily used building blocks for numerical algorithms out of the box, which enables users to focus on real scientific issues.

Working with ODL

As a user

User’s guide to ODL

As a developer

Contributing to odl

Contents

	User’s guide to ODL
	Introduction

	In depth

	Contributing to odl
	How to document

	Working with odl source code

	Frequently asked questions
	General errors

	Errors related to Python 2/3

	Usage

	Glossary

	Mathematics behind ODL
	Discretizations

	Transformations

	Release Notes
	ODL 0.2.2 Release Notes (2016-03-11)

	ODL 0.2.1 Release Notes (2016-03-11)

	ODL 0.2 Release Notes (2016-03-11)

	ODL 0.1 Release Notes (2016-03-08)

	References

	odl
	diagnostics

	discr

	operator

	set

	solvers

	space

	tomo

	trafos

	util

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

User’s guide to ODL

Welcome to the ODL users guide, this guide is intended to give you a simple introduction to ODL and how to work with it. If you need help on a specific function you should look at its documentation.

	Introduction
	About ODL

	Installing

	Getting started

	In depth
	Operators

	LinearSpace

	Vectorized functions

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	User’s guide to ODL

Introduction

	About ODL
	Set

	LinearSpace

	Operator

	Discretizations

	Diagnostics

	Installing
	Install Python
	Anaconda

	Install Git
	Overview

	In detail

	Install ODL

	(Optional) Install ODLpp

	Run tests

	Getting started

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	User’s guide to ODL

 	Introduction

About ODL

ODL is a Python library for inverse problems. It contains all the abstract mathematical tools needed from analysis, such as sets, vector spaces and operators as well as optimized implementations of many of the most common of these.

Set

A Set is the fundamental building block of odl objects. It is intended to mirror the mathematical concept of a set [https://en.wikipedia.org/wiki/Set_(mathematics)], and has methods to check if an element is contained in the set

>>> interv = Interval(0, 1)
>>> 0.5 in interv
True
>>> 2.0 in interv
False

The most commonly used sets in odl is the RealNumbers the set of all real numbers [https://en.wikipedia.org/wiki/Real_number] and IntervalProd, arbitrary n-dimensional hypercubes [https://en.wikipedia.org/wiki/Hypercube]. Several convenience sub-classes such as Interval, Rectangle and Cuboid are also provided.

LinearSpace

A LinearSpace is a very important subclass of Set and is a general implementation of a mathematical vector space [https://en.wikipedia.org/wiki/Vector_space]. In odl there are a few kinds of spaces that you will face.

	Continuous function spaces such as FunctionSpace, intended to represent mathematical Function space [https://en.wikipedia.org/wiki/Function_space] such as the lebesgue space Lp [https://en.wikipedia.org/wiki/Lp_space] or the space of Linear operators [https://en.wikipedia.org/wiki/Bounded_operator#Properties_of_the_space_of_bounded_linear_operators]. These are mostly used to represent abstract concepts, and are seldomly used in actual computation.

	[image: \mathbb{F}^n] type spaces such as Rn and Cn, but also the CUDA [https://en.wikipedia.org/wiki/CUDA] accelerated version CudaRn.

	Discretizations of continous spaces. This may for example be a discretization of a cube using voxels. All discretizations inherit form RawDiscretization, but the most important is DiscreteLp.

	In addition to this, there are utility spaces such as ProductSpace which allows the composition of several spaces into a larger space.

In addition to the spaces, all elements in the spaces inherit from LinearSpaceVector. Using these vectors, most standard mathematical operations can be expressed

>>> r3 = Rn(3)
>>> x = r3.element([1, 2, 3])
>>> y = r3.element([4, 5, 6])

Arithmetic such as addition and multiplication by scalars

>>> x + y
Rn(3).element([5.0, 7.0, 9.0])

Inner product etc are defined

>>> r3.inner(x, y)
32.0

See also in depth guide on LinearSpace.

Operator

A operator is a function [https://en.wikipedia.org/wiki/Function_(mathematics)] from some Set to another. In odl these inherit from the abstract class Operator.

See also in depth guide on Operators.

Discretizations

Discretizations ...

Diagnostics

Odl also offers tools to verify the correctness of operators and spaces. Examples include verifying that a Operator‘s derivative is correct:

>>> op = MyOperator()
>>> odl.diagnostics.OperatorTest(op).derivative()

or verifying that a LinearSpace satisfies all expected properties

>>> r3 = odl.Rn(5)
>>> odl.diagnostics.SpaceTest(r3).run_tests()

See SpaceTest and OperatorTest for more details.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	User’s guide to ODL

 	Introduction

Installing

Installing odl is intended to be straightforward, and this guide is meant for new users. To install odl you need to do the following steps:

	Install Python

	Install Git

	Install ODL

	Run tests

If you have done any step before, you can ofc skip it.

Install Python

To begin with, you need a python distribution. If you are an experienced user, you can use any distribution you’d like.

Anaconda

If you are a python novice using Windows, we recommend that you install a full package such as Anaconda. To install Anaconda

	Download Anaconda from anaconda’s webpage [https://www.continuum.io/downloads]

	Once installed run in a console

user$ conda update --all

to make sure you have the latest versions of all packages

Install Git

You also need to install Git to be able to download odl.

Overview

	Debian / Ubuntu
	sudo apt-get install git

	Fedora
	sudo yum install git

	Windows
	Download and install msysGit [http://code.google.com/p/msysgit/downloads/list]

	OS X
	Use the git-osx-installer [http://code.google.com/p/git-osx-installer/downloads/list]

In detail

See the git page for the most recent information.

Have a look at the github install help pages available from github help [https://help.github.com/]

There are good instructions here: http://book.git-scm.com/2_installing_git.html

Install ODL

You are now ready to install ODL! To do that, run the following where you want to install it

git clone https://github.com/odlgroup/odl

cd odl

For installation in a local user folder run

user$ pip install --user -e .

For system-wide installation, run (as root, e.g. using sudo or equivalent)

root# pip install -e .

(Optional) Install ODLpp

If you also wish to use the (optional) CUDA extensions you need to run

user$ git submodule update --init --recursive

user$ cd odlpp

From here follow the instructions in odlpp and install it. You then need to re-install ODL.

Run tests

To verify your installation you should run some basic tests. To run these:

user$ py.test

This requires the module pytest [http://pytest.org/latest/]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	User’s guide to ODL

 	Introduction

Getting started

Welcome to the ODL users guide, this guide is intended to give you a simple introduction to ODL and how to work with it. If you need help on a specific function you should look at its documentation.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	User’s guide to ODL

In depth

This is a more in depth guide to the different parts of ODL.

	Operators
	In place evaluation

	Out-of-place evaluation

	Operator arithmetic

	LinearSpace
	Abstract methods

	Notes

	References

	Vectorized functions
	What is vectorization?

	How to use Numpy’s ufuncs?

	Usage in ODL

	Further reading

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	User’s guide to ODL

 	In depth

Operators

Operators in ODL are represented by the abstract Operator
class. As an abstract class, it cannot be used directly but must be
subclassed for concrete implementation. To define your own operator,
you start by writing:

class MyOperator(odl.Operator):
 ...

Operator has a couple of abstract methods which need to
be explicitly overridden by any subclass, namely

	domain: Set

	Set of elements to which the operator can be applied

	range : Set

	Set in which the operator takes values

As a simple example, you can implement the matrix multiplication
operator

[image: \mathcal{A}: \mathbb{R}^m \to \mathbb{R}^n, \quad \mathcal{A}(x) = Ax]

for a matrix [image: A\in \mathbb{R}^{n\times m}] as follows:

from builtins import super
import numpy as np

class MatVecOperator(odl.Operator):
 def __init__(self, matrix):
 assert isinstance(matrix, np.ndarray)
 self.matrix = matrix
 dom = odl.Rn(matrix.shape[1])
 ran = odl.Rn(matrix.shape[0])
 super().__init__(dom, ran)

In addition, an Operator needs at least one way of
evaluation, in-place or out-of-place.

In place evaluation

In-place evaluation means that the operator is evaluated on a
Operator.domain element, and the result is written to an
already existing Operator.range element. To implement
this behavior, create the (private) Operator._apply
method with the following signature, here given for the above
example:

class MatVecOperator(odl.Operator):
 ...
 def _apply(self, x, out):
 self.matrix.dot(x, out=out.asarray())

In-place evaluation is usually more efficient and should be used
whenever possible.

Out-of-place evaluation

Out-of-place evaluation means that the
operator is evaluated on a domain element, and
the result is written to a newly allocated
range element. To implement this
behavior, create the (private) Operator._call method
with the following signature, here given for the above example:

class MatVecOperator(odl.Operator):
 ...
 def _call(self, x):
 return self.range.element(self.matrix.dot(x))

Out-of-place evaluation is usually less efficient since it requires
allocation of an array and a full copy and should be generally
avoided.

Important: Do not call these methods directly. Use the call pattern
operator(x) or operator(x, out=y), e.g.:

matrix = np.array([[1, 0], [0, 1], [1, 1]])
operator = MatVecOperator(matrix)
x = odl.Rn(2).one()
y = odl.Rn(3).element()

Out-of-place evaluation
y = operator(x)

In-place evaluation
operator(x, out=y)

This public calling interface is type-checked, so the private methods
do not need to implement type checks.

Operator arithmetic

It is common in applications to perform arithmetic with operators, for example the addition of matrices

[image: [A+B]x = Ax + Bx]

or multiplication of a functional by a scalar

[image: [\alpha x^*](x) = \alpha x^* (x)]

Another example is matrix multiplication, which corresponds to operator composition

[image: [AB](x) = A(Bx)]

All available operator arithmetic is shown below. A, B represent arbitrary Operator‘s,
f is an Operator whose Operator.range is a Field (sometimes called a functional [https://en.wikipedia.org/wiki/Functional_(mathematics)]), and
a is a scalar.

	Code
	Meaning
	Class

	(A + B)(x)
	A(x) + B(x)
	OperatorSum

	(A * B)(x)
	A(B(x))
	OperatorComp

	(a * A)(x)
	a * A(x)
	OperatorLeftScalarMult

	(A * a)(x)
	A(a * x)
	OperatorRightScalarMult

	(v * f)(x)
	v * f(x)
	FunctionalLeftVectorMult

	(v * A)(x)
	v * A(x)
	OperatorLeftVectorMult

	(A * v)(x)
	A(v * x)
	OperatorRightVectorMult

	not available
	A(x) * B(x)
	OperatorPointwiseProduct

There are also a few derived expressions using the above:

	Code
	Meaning

	(+A)(x)
	A(x)

	(-A)(x)
	(-1) * A(x)

	(A - B)(x)
	A(x) + (-1) * B(x)

	A**n(x)
	A(A**(n-1)(x)), A^1(x) = A(x)

	(A / a)(x)
	A((1/a) * x)

	(A @ B)(x)
	(A * B)(x)

Except for composition, operator arithmetic is generally only defined when Operator.domain and
Operator.range are either instances of LinearSpace or Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	User’s guide to ODL

 	In depth

LinearSpace

The LinearSpace represent abstract mathematical concepts
of vector spaces. It cannot be used directly but are rather intended
to be subclassed by concrete space implementations. The space
provide default implementations of the most important vector space
operations. See the documentation of the respective classes for more
details.

The concept of linear vector spaces in ODL is largely inspired by
the Rice Vector Library [http://www.trip.caam.rice.edu/software/rvl/rvl/doc/html/] (RVL).

The abstract LinearSpace class is intended for quick prototyping.
It has a number of abstract methods which must be overridden by a
subclass. On the other hand, it provides automatic error checking
and numerous attributes and methods for convenience.

Abstract methods

In the following, the abstract methods are explained in detail.

Element creation

element(inp=None)

This public method is the factory for the inner
LinearSpaceVector class. It creates a new element of the space,
either from scratch or from an existing data container. In the
simplest possible case, it just delegates the construction to the
LinearSpaceVector class.

If no data is provided, the new element is merely allocated, not
initialized, thus it can contain any value.

	Parameters:

	
	inp : object, optional

	A container for values for the element initialization

	Returns:

	
	element : LinearSpaceVector

	The new vector

Linear combination

_lincomb(a, x1, b, x2, out)

This private method is the raw implementation (i.e. without error
checking) of the linear combination out = a * x1 + b * x2.
LinearSpace._lincomb and its public counterpart
LinearSpace.lincomb are used to covera range of convenience
functions, see below.

	Parameters:

	
	a, b : scalars, must be members of the space’s field

	Multiplicative scalar factors for input vector x1 or x2,
respectively

	x1, x2 : LinearSpaceVector

	Input vectors

	out : LinearSpaceVector

	Element to which the result of the computation is written

Returns: None

	Requirements:

	
	Aliasing of x1, x2 and out must be allowed.

	The input vectors x1 and x2 must not be modified.

	The initial state of the output vector out must not
influence the result.

Underlying scalar field

field

The public attribute determining the type of scalars which
underlie the space. Can be instances of either RealNumbers or
ComplexNumbers (see Field).

Should be implemented as a @property to make it immutable.

Equality check

__eq__(other)

LinearSpace inherits this abstract method from Set. Its
purpose is to check two LinearSpace instances for equality.

	Parameters:

	
	other : object

	The object to compare to

	Returns:

	
	equals : bool

	True if other is the same LinearSpace, False
otherwise

Distance (optional)

_dist(x1, x2)

A raw (not type-checking) private method measuring the distance
between two vectors x1 and x2.

A space with a distance is called a metric space.

	Parameters:

	
	x1,x2 : LinearSpaceVector

	Vectors whose mutual distance to calculate

	Returns:

	
	distance : float

	The distance between x1 and x2, measured in the space’s
metric

	Requirements:

	
	_dist(x, y) == _dist(y, x)

	_dist(x, y) <= _dist(x, z) + _dist(z, y)

	_dist(x, y) >= 0

	_dist(x, y) == 0 (approx.) if and only if x == y (approx.)

Norm (optional)

_norm(x)

A raw (not type-checking) private method measuring the length of a
space element x.

A space with a norm is called a normed space.

	Parameters:

	
	x : LinearSpaceVector

	The vector to measure

	Returns:

	
	norm : float

	The length of x as measured in the space’s norm

	Requirements:

	
	_norm(s * x) = |s| * _norm(x) for any scalar s

	_norm(x + y) <= _norm(x) + _norm(y)

	_norm(x) >= 0

	_norm(x) == 0 (approx.) if and only if x == 0 (approx.)

Inner product (optional)

_inner(x, y)

A raw (not type-checking) private method calculating the inner
product of two space elements x and y.

	Parameters:

	
	x,y : LinearSpaceVector

	Vectors whose inner product to calculate

	Returns:

	
	inner : float or complex

	The inner product of x and y. If
LinearSpace.field is the set of real
numbers, inner is a float, otherwise complex.

	Requirements:

	
	_inner(x, y) == _inner(y, x)^* with ‘*’ = complex conjugation

	_inner(s * x, y) == s * _inner(x, y) for s scalar

	_inner(x + z, y) == _inner(x, y) + _inner(z, y)

	_inner(x, x) == 0 (approx.) if and only if x == 0 (approx.)

Pointwise multiplication (optional)

_multiply(x1, x2, out)

A raw (not type-checking) private method multiplying two vectors
x1 and x2 element-wise and storing the result in out.

	Parameters:

	
	x1, x2 : LinearSpaceVector

	Vectors whose element-wise product to calculate

	out : LinearSpaceVector

	Vector to store the result

Returns: None

	Requirements:

	
	_multiply(x, y, out) <==> _multiply(y, x, out)

	
	_multiply(s * x, y, out) <==> _multiply(x, y, out); out *= s <==>

	_multiply(x, s * y, out) for any scalar s

	There is a space element one with
out after _multiply(one, x, out) or _multiply(x, one, out)
equals x.

Notes

	A normed space is automatically a metric space with the distance
function _dist(x, y) = _norm(x - y).

	A Hilbert space (inner product space) is automatically a normed space
with the norm function _norm(x) = sqrt(_inner(x, x)).

	The conditions on the pointwise multiplication constitute a
unital commutative algebra in the mathematical sense.

References

See Wikipedia’s mathematical overview articles
Vector space [https://en.wikipedia.org/wiki/Vector_space], Algebra [https://en.wikipedia.org/wiki/Associative_algebra].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	User’s guide to ODL

 	In depth

Vectorized functions

This section is intended as a small guideline on how to write functions which work with the
vectorization machinery by Numpy which is used internally in ODL.

What is vectorization?

In general, vectorization means that a function can be evaluated on a whole array of values
at once instead of looping over individual entries. This is very important for performance in an
interpreted language like python, since loops are usually very slow compared to compiled languages.

Technically, vectorization in Numpy works through the Universal functions (ufunc) [http://docs.scipy.org/doc/numpy/reference/ufuncs.html] interface. It
is fast because all loops over data are implemented in C, and the resulting implementations are
exposed to Python for each function individually.

How to use Numpy’s ufuncs?

The easiest way to write fast custom mathematical functions in Python is to use the
available ufuncs [http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs] and compose them to a new function:

def gaussian(x):
 # Negation, powers and scaling are vectorized, of course.
 return np.exp(-x ** 2 / 2)

def step(x):
 # np.where checks the condition in the first argument and
 # returns the second for `True`, otherwise the third. The
 # last two arguments can be arrays, too.
 # Note that also the comparison operation is vectorized.
 return np.where(x[0] <= 0, 0, 1)

This should cover a very large range of useful functions already (basic arithmetic is vectorized,
too!). An even larger list of special functions [http://docs.scipy.org/doc/scipy/reference/special.html] are available in the Scipy package.

Usage in ODL

Python functions are in most cases used as input to a discretization process. For example, we may
want to discretize a two-dimensional Gaussian function:

def gaussian2(x):
 return np.exp(-(x[0] ** 2 + x[1] ** 2) / 2)

on the rectangle [-5, 5] x [-5, 5] with 100 pixels in each
dimension. The code for this is simply:

Note that the minimum and maxiumum coordinates are given as
vectors, not one interval at a time.
discr = odl.uniform_discr([-5, -5], [5, 5], (100, 100))

This creates an element in the discretized space ``discr``
gaussian_discr = discr.element(gaussian2)

What happens behind the scenes is that discr creates a discretization object which
has a built-in method element to turn continuous functions into discrete arrays by evaluating
them at a set of grid points. In the example above, this grid is a uniform sampling of the rectangle
by 100 points per dimension.

To make this process fast, element assumes that the function is written in a way that not only
supports vectorization, but also guarantees that the output has the correct shape. The function
receives a meshgrid tuple as input, in the above case consisting of two vectors:

>>> mesh = discr.meshgrid()
>>> mesh[0].shape
(100, 1)
>>> mesh[1].shape
(1, 100)

When inserted into the function, the final shape of the output is determined by Numpy’s
broadcasting rules [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]. For the Gaussian function, Numpy will conclude that the output shape must
be (100, 100) since the arrays in mesh are added after squaring. This size is the same
as expected by the discretization.

If, however, the function does not use all components of its input, the shape will be different:

>>> def gaussian_const_x0_bad(x):
... return np.exp(-x[1] ** 2 / 2) # no x[0] -> no broadcasting

>>> gaussian_const_x0_bad(mesh).shape
(1, 100)

This array is too small for the discretization, and an exception will be raised, stating that this
function cannot be discretized.

The solution to this issue is rather simple: just make sure that all components are used such that
the broadcasting rules are triggered:

>>> def gaussian_const_x0_good(x):
... return np.exp(-x[1] ** 2 / 2) + 0 * x[0] # broadcasting

>>> gaussian_const_x0_good(mesh).shape
(100, 100)

Further reading

Scipy Lecture notes on Numpy [http://www.scipy-lectures.org/intro/numpy/index.html]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

Contributing to odl

	How to document
	Advanced
	Re-generating the doc

	Modifications to numpydoc

	Working with odl source code
	Introduction

	Install git
	Overview

	In detail

	Following the latest source
	Get the local copy of the code

	Updating the code

	Making a patch
	Making patches

	Moving from patching to development

	Git for development
	Making your own copy (fork) of odl

	Set up your fork

	Configure git

	Development workflow

	Maintainer workflow

	git resources
	Tutorials and summaries

	Advanced git workflow

	Manual pages online

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

How to document

ODL is documented using sphinx [http://sphinx-doc.org/] and a modified version of [https://github.com/odlgroup/numpydoc] numpydoc [https://github.com/numpy/numpydoc]. An example documentation is given below

class MyClass(object):

 """Calculate important things.

 The first line summarizes the class, after that comes a blank
 line followed by a more detailed description (both optional).
 Confine the docstring to 72 characters per line. In general, try
 to follow `PEP257`_ in the docstring style.

 Docstrings can have sections with headers, signalized by a
 single-dash underline, e.g. "References". Check out
 `Numpydoc`_ for the recognized section labels.

 References

 .. _PEP257: https://www.python.org/dev/peps/pep-0257/
 .. _Numpydoc: https://github.com/numpy/numpy/blob/master/doc/\
 HOWTO_DOCUMENT.rst.txt
 """

 def __init__(self, c, parameter=None):
 """Initializer doc goes here.

 Parameters

 c : `float`
 Constant to scale by
 parameter : `float`, optional
 Some extra parameter
 """
 self.c = c
 self.parameter = parameter

 def my_method(self, x, y):
 """Calculate ``c * (x + y).``

 The first row is a summary, after that goes
 a more detailed description.

 Parameters

 x : `float`
 First summand
 y : `float`
 Second summand

 Returns

 scaled_sum : `float`
 Result of ``c * (x + y)``

 Examples

 Examples should be working pieces of code and are checked with
 ``doctest`` for consistent output.

 >>> obj = MyClass(5)
 >>> obj(3, 5)
 8.0
 """
 return self.c * (x + y)

Some short tips

	Text within backticks: `some_target` will create a link to the target.

	Make sure that the first line is short and descriptive.

	Examples are often better than long descriptions.

Quick summary of PEP257 [https://www.python.org/dev/peps/pep-0257/]

	Write docstrings always with triple double quotes """, even one-liners

	Class docstrings are separated from the class definition line by a blank line, functions and methods begin directly in the next line.

	Use imperative style (“Calculate”, not “Calculates”) in the summary (=first) line and end it with a full stop. Do not add a space after the opening triple quotes.

	For one-liners: put the closing quotes on the same line. Otherwise: make a new line for the closing quotes.

	Document at least all public methods and attributes.

Advanced

This section covers advanced topics for developers that need to change how the doc works.

Re-generating the doc

Autosummary currently does not support nested modules, so to handle this we auto-generate .rst files for each module. This is done using the doc/source/generate_doc.py script.

Modifications to numpydoc

Numpydoc has been modified in the following ways:

	The numpy sphinx domain has been removed.

	More extra_public_methods added.

	:autoclass: summaries now link to full name, which allows subclassing between packages.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

Working with odl source code

Contents:

	Introduction

	Install git
	Overview

	In detail

	Following the latest source
	Get the local copy of the code

	Updating the code

	Making a patch
	Making patches

	Moving from patching to development

	Git for development
	Making your own copy (fork) of odl

	Set up your fork

	Configure git

	Development workflow

	Maintainer workflow

	git resources
	Tutorials and summaries

	Advanced git workflow

	Manual pages online

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

Introduction

These pages describe a git [http://git-scm.com/] and github [http://github.com] workflow for the odl [http://github.com/odlgroup/odl]
project.

There are several different workflows here, for different ways of
working with odl.

This is not a comprehensive git reference, it’s just a workflow for our
own project. It’s tailored to the github hosting service. You may well
find better or quicker ways of getting stuff done with git, but these
should get you started.

For general resources for learning git, see git resources.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

Install git

Overview

	Debian / Ubuntu
	sudo apt-get install git

	Fedora
	sudo yum install git

	Windows
	Download and install msysGit [http://code.google.com/p/msysgit/downloads/list]

	OS X
	Use the git-osx-installer [http://code.google.com/p/git-osx-installer/downloads/list]

In detail

See the git page for the most recent information.

Have a look at the github install help pages available from github help [http://help.github.com]

There are good instructions here: http://book.git-scm.com/2_installing_git.html

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

Following the latest source

These are the instructions if you just want to follow the latest
odl source, but you don’t need to do any development for now.

The steps are:

	Install git

	get local copy of the odl github [http://github.com/odlgroup/odl] git repository

	update local copy from time to time

Get the local copy of the code

From the command line:

git clone git://github.com/odlgroup/odl.git

You now have a copy of the code tree in the new odl directory.

Updating the code

From time to time you may want to pull down the latest code. Do this with:

cd odl
git pull

The tree in odl will now have the latest changes from the initial
repository.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

Making a patch

You’ve discovered a bug or something else you want to change
in odl [http://github.com/odlgroup/odl] .. — excellent!

You’ve worked out a way to fix it — even better!

You want to tell us about it — best of all!

The easiest way is to make a patch or set of patches. Here
we explain how. Making a patch is the simplest and quickest,
but if you’re going to be doing anything more than simple
quick things, please consider following the
Git for development model instead.

Making patches

Overview

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don't have it
git clone git://github.com/odlgroup/odl.git
make a branch for your patching
cd odl
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'
make the patch files
git format-patch -M -C master

Then, send the generated patch files to the odl
mailing list — where we will thank you warmly.

In detail

	Tell git who you are so it can label the commits you’ve
made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

	If you don’t already have one, clone a copy of the
odl [http://github.com/odlgroup/odl] repository:

git clone git://github.com/odlgroup/odl.git
cd odl

	Make a ‘feature branch’. This will be where you work on
your bug fix. It’s nice and safe and leaves you with
access to an unmodified copy of the code in the main
branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

	Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'

Note the -am options to commit. The m flag just
signals that you’re going to type a message on the command
line. The a flag — you can just take on faith —
or see why the -a flag? [http://www.gitready.com/beginner/2009/01/18/the-staging-area.html].

	When you have finished, check you have committed all your
changes:

git status

	Finally, make your commits into patches. You want all the
commits since you branched from the master branch:

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Send these files to the odl mailing list.

When you are done, to switch back to the main copy of the
code, just return to the master branch:

git checkout master

Moving from patching to development

If you find you have done some patches, and you have one or
more feature branches, you will probably want to switch to
development mode. You can do this with the repository you
have.

Fork the odl [http://github.com/odlgroup/odl] repository on github — Making your own copy (fork) of odl.
Then:

checkout and refresh master branch from main repo
git checkout master
git pull origin master
rename pointer to main repository to 'upstream'
git remote rename origin upstream
point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/odl.git
push up any branches you've made and want to keep
git push origin the-fix-im-thinking-of

Then you can, if you want, follow the
Development workflow.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

Git for development

Contents:

	Making your own copy (fork) of odl
	Set up and configure a github account

	Create your own forked copy of odl

	Set up your fork
	Overview

	In detail

	Configure git
	Overview

	In detail

	Development workflow
	Workflow summary

	Consider deleting your master branch

	Update the mirror of trunk

	Make a new feature branch

	The editing workflow

	Ask for your changes to be reviewed or merged

	Some other things you might want to do

	Maintainer workflow
	Integrating changes

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

 	Git for development

Making your own copy (fork) of odl

You need to do this only once. The instructions here are very similar
to the instructions at http://help.github.com/forking/ — please see
that page for more detail. We’re repeating some of it here just to give the
specifics for the odl [http://github.com/odlgroup/odl] project, and to suggest some default names.

Set up and configure a github account

If you don’t have a github account, go to the github page, and make one.

You then need to configure your account to allow write access — see
the Generating SSH keys help on github help [http://help.github.com].

Create your own forked copy of odl [http://github.com/odlgroup/odl]

	Log into your github account.

	Go to the odl [http://github.com/odlgroup/odl] github home at odl github [http://github.com/odlgroup/odl].

	Click on the fork button:

[image: ../../_images/forking_button.png]
Now, after a short pause and some ‘Hardcore forking action’, you
should find yourself at the home page for your own forked copy of odl [http://github.com/odlgroup/odl].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

 	Git for development

Set up your fork

First you follow the instructions for Making your own copy (fork) of odl.

Overview

git clone git@github.com:your-user-name/odl.git
cd odl
git remote add upstream git://github.com/odlgroup/odl.git

In detail

Clone your fork

	Clone your fork to the local computer with git clone
git@github.com:your-user-name/odl.git

	Investigate. Change directory to your new repo: cd odl. Then
git branch -a to show you all branches. You’ll get something
like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and
that you also have a remote connection to origin/master.
What remote repository is remote/origin? Try git remote -v to
see the URLs for the remote. They will point to your github fork.

Now you want to connect to the upstream odl github [http://github.com/odlgroup/odl] repository, so
you can merge in changes from trunk.

Linking your repository to the upstream repo

cd odl
git remote add upstream git://github.com/odlgroup/odl.git

upstream here is just the arbitrary name we’re using to refer to the
main odl [http://github.com/odlgroup/odl] repository at odl github [http://github.com/odlgroup/odl].

Note that we’ve used git:// for the URL rather than git@. The
git:// URL is read only. This means we that we can’t accidentally
(or deliberately) write to the upstream repo, and we are only going to
use it to merge into our own code.

Just for your own satisfaction, show yourself that you now have a new
‘remote’, with git remote -v show, giving you something like:

upstream git://github.com/odlgroup/odl.git (fetch)
upstream git://github.com/odlgroup/odl.git (push)
origin git@github.com:your-user-name/odl.git (fetch)
origin git@github.com:your-user-name/odl.git (push)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

 	Git for development

Configure git

Overview

Your personal git configurations are saved in the .gitconfig file in
your home directory.

Here is an example .gitconfig file:

[user]
 name = Your Name
 email = you@yourdomain.example.com

[alias]
 ci = commit -a
 co = checkout
 st = status
 stat = status
 br = branch
 wdiff = diff --color-words

[core]
 editor = vim

[merge]
 summary = true

You can edit this file directly or you can use the git config --global
command:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file,
or run the commands above.

In detail

user.name and user.email

It is good practice to tell git [http://git-scm.com/] who you are, for labeling any changes
you make to the code. The simplest way to do this is from the command
line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file, which
should now contain a user section with your name and email:

[user]
 name = Your Name
 email = you@yourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com
with your actual name and email address.

Aliases

You might well benefit from some aliases to common commands.

For example, you might well want to be able to shorten git checkout
to git co. Or you may want to alias git diff --color-words
(which gives a nicely formatted output of the diff) to git wdiff

The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents
like this:

[alias]
 ci = commit -a
 co = checkout
 st = status -a
 stat = status -a
 br = branch
 wdiff = diff --color-words

Editor

You may also want to make sure that your editor of choice is used

git config --global core.editor vim

Merging

To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
 log = true

Or from the command line:

git config --global merge.log true

Fancy log output

This is a very nice alias to get a fancy log output; it should go in the
alias section of your .gitconfig file:

lg = log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)[%an]%Creset' --abbrev-commit --date=relative

You use the alias with:

git lg

and it gives graph / text output something like this (but with color!):

* 6d8e1ee - (HEAD, origin/my-fancy-feature, my-fancy-feature) NF - a fancy file (45 minutes ago) [Matthew Brett]
* d304a73 - (origin/placeholder, placeholder) Merge pull request #48 from hhuuggoo/master (2 weeks ago) [Jonathan Terhorst]
|\
| * 4aff2a8 - fixed bug 35, and added a test in test_bugfixes (2 weeks ago) [Hugo]
|/
* a7ff2e5 - Added notes on discussion/proposal made during Data Array Summit. (2 weeks ago) [Corran Webster]
* 68f6752 - Initial implimentation of AxisIndexer - uses 'index_by' which needs to be changed to a call on an Axes object - this is all very sketchy right now. (2 weeks ago) [Corr
* 376adbd - Merge pull request #46 from terhorst/master (2 weeks ago) [Jonathan Terhorst]
|\
| * b605216 - updated joshu example to current api (3 weeks ago) [Jonathan Terhorst]
| * 2e991e8 - add testing for outer ufunc (3 weeks ago) [Jonathan Terhorst]
| * 7beda5a - prevent axis from throwing an exception if testing equality with non-axis object (3 weeks ago) [Jonathan Terhorst]
| * 65af65e - convert unit testing code to assertions (3 weeks ago) [Jonathan Terhorst]
| * 956fbab - Merge remote-tracking branch 'upstream/master' (3 weeks ago) [Jonathan Terhorst]
| |\
| |/

Thanks to Yury V. Zaytsev for posting it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

 	Git for development

Development workflow

You already have your own forked copy of the odl [http://github.com/odlgroup/odl] repository, by
following Making your own copy (fork) of odl. You have Set up your fork. You have configured
git by following Configure git. Now you are ready for some real work.

Workflow summary

In what follows we’ll refer to the upstream odl master branch, as
“trunk”.

	Don’t use your master branch for anything. Consider deleting it.

	When you are starting a new set of changes, fetch any changes from trunk,
and start a new feature branch from that.

	Make a new branch for each separable set of changes — “one task, one
branch” (ipython git workflow [http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html]).

	Name your branch for the purpose of the changes - e.g.
bugfix-for-issue-14 or refactor-database-code.

	If you can possibly avoid it, avoid merging trunk or any other branches into
your feature branch while you are working.

	If you do find yourself merging from trunk, consider Rebasing on trunk

	Ask on the odl mailing list if you get stuck.

	Ask for code review!

This way of working helps to keep work well organized, with readable history.
This in turn makes it easier for project maintainers (that might be you) to see
what you’ve done, and why you did it.

See linux git workflow [http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html] and ipython git workflow [http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html] for some explanation.

Consider deleting your master branch

It may sound strange, but deleting your own master branch can help reduce
confusion about which branch you are on. See deleting master on github [http://matthew-brett.github.com/pydagogue/gh_delete_master.html] for
details.

Update the mirror of trunk

First make sure you have done Linking your repository to the upstream repo.

From time to time you should fetch the upstream (trunk) changes from github:

git fetch upstream

This will pull down any commits you don’t have, and set the remote branches to
point to the right commit. For example, ‘trunk’ is the branch referred to by
(remote/branchname) upstream/master - and if there have been commits since
you last checked, upstream/master will change after you do the fetch.

Make a new feature branch

When you are ready to make some changes to the code, you should start a new
branch. Branches that are for a collection of related edits are often called
‘feature branches’.

Making an new branch for each set of related changes will make it easier for
someone reviewing your branch to see what you are doing.

Choose an informative name for the branch to remind yourself and the rest of us
what the changes in the branch are for. For example add-ability-to-fly, or
buxfix-for-issue-42.

Update the mirror of trunk
git fetch upstream
Make new feature branch starting at current trunk
git branch my-new-feature upstream/master
git checkout my-new-feature

Generally, you will want to keep your feature branches on your public github [http://github.com]
fork of odl [http://github.com/odlgroup/odl]. To do this, you git push [http://schacon.github.com/git/git-push.html] this new branch up to your
github repo. Generally (if you followed the instructions in these pages, and by
default), git will have a link to your github repo, called origin. You push
up to your own repo on github with:

git push origin my-new-feature

In git >= 1.7 you can ensure that the link is correctly set by using the
--set-upstream option:

git push --set-upstream origin my-new-feature

From now on git will know that my-new-feature is related to the
my-new-feature branch in the github repo.

The editing workflow

Overview

hack hack
git add my_new_file
git commit -am 'NF - some message'
git push

In more detail

	Make some changes

	See which files have changed with git status (see git status [http://schacon.github.com/git/git-status.html]).
You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

	Check what the actual changes are with git diff (git diff [http://schacon.github.com/git/git-diff.html]).

	Add any new files to version control git add new_file_name (see
git add [http://schacon.github.com/git/git-add.html]).

	To commit all modified files into the local copy of your repo, do
git commit -am 'A commit message'. Note the -am options to
commit. The m flag just signals that you’re going to type a
message on the command line. The a flag — you can just take on
faith — or see why the -a flag? [http://www.gitready.com/beginner/2009/01/18/the-staging-area.html] — and the helpful use-case
description in the tangled working copy problem [http://tomayko.com/writings/the-thing-about-git]. The git commit [http://schacon.github.com/git/git-commit.html] manual
page might also be useful.

	To push the changes up to your forked repo on github, do a git
push (see git push [http://schacon.github.com/git/git-push.html]).

The commit message

Bear in mind that the commit message will be part of the history of the repository,
shown by typing git log, so good messages will make the history searchable.
Don’t see the commit message as an annoyance, but rather as an important part of
your contribution.

We appreciate if you follow the following style:

	Start your commit with an acronym [http://docs.scipy.org/doc/numpy-dev/dev/gitwash/development_workflow.html#writing-the-commit-message], e.g., BUG, TST or STY to
indicate what kind of modification you make.

	Write a one-line summary of your modification no longer than 50 characters.
If you have a hard time summarizing you changes, maybe you need to split up
the commit into parts.

Use imperative style, i.e. write add super feature or fix horrific bug
rather than added, fixed This saves two characters for something else.

Don’t use markdown. You can refer to issues by writing #12. You can even
close an issue by writing closes #12, but do that only if you are sure.

	(optional) Write an extended summary. Describe why these changes are
necessary and what the new code does better than the old one. You can use
markdown here, i.e. create lists, tables, ...

Ask for your changes to be reviewed or merged

When you are ready to ask for someone to review your code and consider a merge:

	Go to the URL of your forked repo, say
http://github.com/your-user-name/odl.

	Use the ‘Switch Branches’ dropdown menu near the top left of the page to
select the branch with your changes:

[image: ../../_images/branch_dropdown.png]

	Click on the ‘Pull request’ button:

[image: ../../_images/pull_button.png]
Enter a title for the set of changes, and some explanation of what you’ve
done. Say if there is anything you’d like particular attention for - like a
complicated change or some code you are not happy with.

If you don’t think your request is ready to be merged, just say so in your
pull request message. This is still a good way of getting some preliminary
code review.

Some other things you might want to do

Delete a branch on github

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

(Note the colon : before test-branch. See also:
http://github.com/guides/remove-a-remote-branch

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all
committing into the same repository, or even the same branch, then just
share it via github.

First fork odl into your account, as from Making your own copy (fork) of odl.

Then, go to your forked repository github page, say
http://github.com/your-user-name/odl

Click on the ‘Admin’ button, and add anyone else to the repo as a
collaborator:

[image: ../../_images/pull_button.png]

Now all those people can do:

git clone git@githhub.com:your-user-name/odl.git

Remember that links starting with git@ use the ssh protocol and are
read-write; links starting with git:// are read-only.

Your collaborators can then commit directly into that repo with the
usual:

git commit -am 'ENH - much better code'
git push origin master # pushes directly into your repo

Explore your repository

To see a graphical representation of the repository branches and
commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer [http://github.com/blog/39-say-hello-to-the-network-graph-visualizer] for your github
repo.

Finally the Fancy log output lg alias will give you a reasonable text-based
graph of the repository.

Rebasing on trunk

Let’s say you thought of some work you’d like to do. You
Update the mirror of trunk and Make a new feature branch called
cool-feature. At this stage trunk is at some commit, let’s call it E. Now
you make some new commits on your cool-feature branch, let’s call them A, B,
C. Maybe your changes take a while, or you come back to them after a while. In
the meantime, trunk has progressed from commit E to commit (say) G:

 A---B---C cool-feature
 /
D---E---F---G trunk

At this stage you consider merging trunk into your feature branch, and you
remember that this here page sternly advises you not to do that, because the
history will get messy. Most of the time you can just ask for a review, and not
worry that trunk has got a little ahead. But sometimes, the changes in trunk
might affect your changes, and you need to harmonize them. In this situation
you may prefer to do a rebase.

rebase takes your changes (A, B, C) and replays them as if they had been made to
the current state of trunk. In other words, in this case, it takes the
changes represented by A, B, C and replays them on top of G. After the rebase,
your history will look like this:

 A'--B'--C' cool-feature
 /
D---E---F---G trunk

See rebase without tears [http://matthew-brett.github.com/pydagogue/rebase_without_tears.html] for more detail.

To do a rebase on trunk:

Update the mirror of trunk
git fetch upstream
go to the feature branch
git checkout cool-feature
make a backup in case you mess up
git branch tmp cool-feature
rebase cool-feature onto trunk
git rebase --onto upstream/master upstream/master cool-feature

In this situation, where you are already on branch cool-feature, the last
command can be written more succinctly as:

git rebase upstream/master

When all looks good you can delete your backup branch:

git branch -D tmp

If it doesn’t look good you may need to have a look at
Recovering from mess-ups.

If you have made changes to files that have also changed in trunk, this may
generate merge conflicts that you need to resolve - see the git rebase [http://schacon.github.com/git/git-rebase.html] man
page for some instructions at the end of the “Description” section. There is
some related help on merging in the git user manual - see resolving a merge [http://schacon.github.com/git/user-manual.html#resolving-a-merge].

Recovering from mess-ups

Sometimes, you mess up merges or rebases. Luckily, in git it is
relatively straightforward to recover from such mistakes.

If you mess up during a rebase:

git rebase --abort

If you notice you messed up after the rebase:

reset branch back to the saved point
git reset --hard tmp

If you forgot to make a backup branch:

look at the reflog of the branch
git reflog show cool-feature

8630830 cool-feature@{0}: commit: BUG: io: close file handles immediately
278dd2a cool-feature@{1}: rebase finished: refs/heads/my-feature-branch onto 11ee694744f2552d
26aa21a cool-feature@{2}: commit: BUG: lib: make seek_gzip_factory not leak gzip obj
...

reset the branch to where it was before the botched rebase
git reset --hard cool-feature@{2}

Rewriting commit history

Note

Do this only for your own feature branches.

There’s an embarrassing typo in a commit you made? Or perhaps the you
made several false starts you would like the posterity not to see.

This can be done via interactive rebasing.

Suppose that the commit history looks like this:

git log --oneline
eadc391 Fix some remaining bugs
a815645 Modify it so that it works
2dec1ac Fix a few bugs + disable
13d7934 First implementation
6ad92e5 * masked is now an instance of a new object, MaskedConstant
29001ed Add pre-nep for a copule of structured_array_extensions.
...

and 6ad92e5 is the last commit in the cool-feature branch. Suppose we
want to make the following changes:

	Rewrite the commit message for 13d7934 to something more sensible.

	Combine the commits 2dec1ac, a815645, eadc391 into a single one.

We do as follows:

make a backup of the current state
git branch tmp HEAD
interactive rebase
git rebase -i 6ad92e5

This will open an editor with the following text in it:

pick 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
pick a815645 Modify it so that it works
pick eadc391 Fix some remaining bugs

Rebase 6ad92e5..eadc391 onto 6ad92e5
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

To achieve what we want, we will make the following changes to it:

r 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
f a815645 Modify it so that it works
f eadc391 Fix some remaining bugs

This means that (i) we want to edit the commit message for
13d7934, and (ii) collapse the last three commits into one. Now we
save and quit the editor.

Git will then immediately bring up an editor for editing the commit
message. After revising it, we get the output:

[detached HEAD 721fc64] FOO: First implementation
 2 files changed, 199 insertions(+), 66 deletions(-)
[detached HEAD 0f22701] Fix a few bugs + disable
 1 files changed, 79 insertions(+), 61 deletions(-)
Successfully rebased and updated refs/heads/my-feature-branch.

and the history looks now like this:

0f22701 Fix a few bugs + disable
721fc64 ENH: Sophisticated feature
6ad92e5 * masked is now an instance of a new object, MaskedConstant

If it went wrong, recovery is again possible as explained above.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

 	Git for development

Maintainer workflow

This page is for maintainers — those of us who merge our own or other
peoples’ changes into the upstream repository.

Being as how you’re a maintainer, you are completely on top of the basic stuff
in Development workflow.

The instructions in Linking your repository to the upstream repo add a remote that has read-only
access to the upstream repo. Being a maintainer, you’ve got read-write access.

It’s good to have your upstream remote have a scary name, to remind you that
it’s a read-write remote:

git remote add upstream-rw git@github.com:odlgroup/odl.git
git fetch upstream-rw

Integrating changes

Let’s say you have some changes that need to go into trunk
(upstream-rw/master).

The changes are in some branch that you are currently on. For example, you are
looking at someone’s changes like this:

git remote add someone git://github.com/someone/odl.git
git fetch someone
git branch cool-feature --track someone/cool-feature
git checkout cool-feature

So now you are on the branch with the changes to be incorporated upstream. The
rest of this section assumes you are on this branch.

A few commits

If there are only a few commits, consider rebasing to upstream:

Fetch upstream changes
git fetch upstream-rw
rebase
git rebase upstream-rw/master

Remember that, if you do a rebase, and push that, you’ll have to close any
github pull requests manually, because github will not be able to detect the
changes have already been merged.

A long series of commits

If there are a longer series of related commits, consider a merge instead:

git fetch upstream-rw
git merge --no-ff upstream-rw/master

The merge will be detected by github, and should close any related pull requests
automatically.

Note the --no-ff above. This forces git to make a merge commit, rather than
doing a fast-forward, so that these set of commits branch off trunk then rejoin
the main history with a merge, rather than appearing to have been made directly
on top of trunk.

Check the history

Now, in either case, you should check that the history is sensible and you have
the right commits:

git log --oneline --graph
git log -p upstream-rw/master..

The first line above just shows the history in a compact way, with a text
representation of the history graph. The second line shows the log of commits
excluding those that can be reached from trunk (upstream-rw/master), and
including those that can be reached from current HEAD (implied with the ..
at the end). So, it shows the commits unique to this branch compared to trunk.
The -p option shows the diff for these commits in patch form.

Push to trunk

git push upstream-rw my-new-feature:master

This pushes the my-new-feature branch in this repository to the master
branch in the upstream-rw repository.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Contributing to odl

 	Working with odl source code

git resources

Tutorials and summaries

	github help [http://help.github.com] has an excellent series of how-to guides.

	learn.github [http://learn.github.com/] has an excellent series of tutorials

	The pro git book [http://progit.org/] is a good in-depth book on git.

	A git cheat sheet [http://github.com/guides/git-cheat-sheet] is a page giving summaries of common commands.

	The git user manual [http://schacon.github.com/git/user-manual.html]

	The git tutorial [http://schacon.github.com/git/gittutorial.html]

	The git community book [http://book.git-scm.com/]

	git ready [http://www.gitready.com/] — a nice series of tutorials

	git casts [http://www.gitcasts.com/] — video snippets giving git how-tos.

	git magic [http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html] — extended introduction with intermediate detail

	The git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html] is an easy read explaining the concepts behind git.

	git foundation [http://matthew-brett.github.com/pydagogue/foundation.html] expands on the git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html].

	Fernando Perez’ git page — Fernando’s git page [http://www.fperez.org/py4science/git.html] — many
links and tips

	A good but technical page on git concepts [http://www.eecs.harvard.edu/~cduan/technical/git/]

	git svn crash course [http://git-scm.com/course/svn.html]: git for those of us used to subversion [http://subversion.tigris.org/]

Advanced git workflow

There are many ways of working with git; here are some posts on the
rules of thumb that other projects have come up with:

	Linus Torvalds on git management [http://kerneltrap.org/Linux/Git_Management]

	Linus Torvalds on linux git workflow [http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html] . Summary; use the git tools
to make the history of your edits as clean as possible; merge from
upstream edits as little as possible in branches where you are doing
active development.

Manual pages online

You can get these on your own machine with (e.g) git help push or
(same thing) git push --help, but, for convenience, here are the
online manual pages for some common commands:

	git add [http://schacon.github.com/git/git-add.html]

	git branch [http://schacon.github.com/git/git-branch.html]

	git checkout [http://schacon.github.com/git/git-checkout.html]

	git clone [http://schacon.github.com/git/git-clone.html]

	git commit [http://schacon.github.com/git/git-commit.html]

	git config [http://schacon.github.com/git/git-config.html]

	git diff [http://schacon.github.com/git/git-diff.html]

	git log [http://schacon.github.com/git/git-log.html]

	git pull [http://schacon.github.com/git/git-pull.html]

	git push [http://schacon.github.com/git/git-push.html]

	git remote [http://schacon.github.com/git/git-remote.html]

	git status [http://schacon.github.com/git/git-status.html]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

Frequently asked questions

Abbreviations: Q uestion – P roblem – S olution

General errors

	Q: When importing odl, the following error is shown:

File "/path/to/odl/odl/__init__.py", line 36

 from . import diagnostics

 ImportError: cannot import diagnostics

P: When you for the first time import (=execute) a module or execute a
script, a bytecode [https://en.wikipedia.org/wiki/Bytecode] file is created,
basically to speed up execution next time. If you installed odl with
pip -e (--editable), these files can interfere with changes to your
codebase.

S: Delete the bytecode files. In a standard GNU/Linux shell, you can
simply invoke (in your odl working directory)

find . -name *.pyc | xargs rm

	Q: When adding two vectors, the following error is shown:

TypeError: unsupported operand type(s) for -: 'DiscreteLpVector' and 'DiscreteLpVector'

P: The vectors you are trying to add are not in the same space,
for example the following code gives the error

>>> x = odl.uniform_discr(0, 1, 10).one()
>>> y = odl.uniform_discr(0, 1, 11).one()
>>> x - y

In this case, the problem is that the vectors have a different number of elements.
Other possible issues include that they are discretizations of different sets,
have different data types (dtype), or implementation (for example cuda/cpu).

S: The vectors need to somehow be cast to the same space.
How to do this depends on the problem at hand. To find what the issue is,
inspect the space properties of both vectors. For example in the above
we see that the issue lies in the number of discretization points

>>> x.space
odl.uniform_discr(0, 1, 10)
>>> y.space
odl.uniform_discr(0, 1, 11)

	In the case of spaces being discretizations of different underlying spaces,
a transformation of some kind has to be applied (for example by using an operator).
In general, errors like this indicates a conceptual issue with the code,
for example a “we identify X with Y” step has been omitted.

	If the dtype or impl do not match, they need to be cast to each one of the others.
The most simple way to do this is by using the DiscreteLpVector.astype method.

Errors related to Python 2/3

	Q: I follow your recommendation to call super().__init__(dom, ran)
in the __init__() method of MyOperator, but I get the following
error:

File <...>, line ..., in __init__
 super().__init__(dom, ran)

TypeError: super() takes at least 1 argument (0 given)

P: The super() function in Python 2 [https://docs.python.org/2/library/functions.html#super] has to
be called with a type as first argument, whereas
in Python 3 [https://docs.python.org/3/library/functions.html#super], the
type argument is optional and usually not needed.

S: We recommend to include from builtins import super in your
module to backport the new Py3 super() function. This way, your code
will run in both Python 2 and 3.

Usage

	Q: I want to write an Operator with two input arguments, for example

[image: op(x, y) := x + y]

However, ODL only supports single arguments. How do I do this?

P: Mathematically, such an operator is defined as

[image: \mathcal{A}: \mathcal{X}_1 \times \mathcal{X}_2 \rightarrow \mathcal{Z}]

ODL adhers to the strict definition of this and hence only takes one parameter
[image: x \in \mathcal{X}_1 \times \mathcal{X}_2]. This product space element
[image: x] is then a tuple of elements [image: x = (x_1, x_2), x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2].

S: Make the domain of the operator a ProductSpace if
[image: \mathcal{X}_1] and [image: \mathcal{X}_2] are LinearSpace‘s, or a
CartesianProduct if they are mere Set‘s. Mathematically, this
corresponds to

[image: op([x, y]) := x + y]

Of course, a number of input arguments larger than 2 can be treated
analogously.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

Glossary

	array-like

	Any data structure which can be converted into a numpy.ndarray by the
numpy.array constructor. Includes all NtuplesBaseVector based classes.

	dtype

	Short for data type, indicates the way data is represented internally.
For example float32 means 32-bit floating point numbers.
See numpy dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html] for more details.

	discretization

	Structure to handle the mapping between abstract objects (e.g. functions) and
concrete, finite realization. It encompasses an abstract Set, a finite data
container (NtuplesBaseVector in general) and the mappings between them,
restriction and extension.

	domain

	Set of elements to which an operator can be applied.

	element

	Saying that x is an element of a given Set my_set means that x in my_set
evaluates to True. The term is typically used as “element of <set>” or “<set>” element.
When referring to a LinearSpace like, e.g., DiscreteLp, an element is of the
corresponding type LinearSpaceVector, i.e. DiscreteLpVector in the above example.
Elements of a set can be created by the Set.element method.

	element-like

	Any data structure which can be converted into an element of a Set by
the Set.element method. For example, an Rn(3) element-like is any array-like
object with 3 real entries.

Example: `DiscreteLp` element-like means that
DiscreteLp.element can create a DiscreteLpVector from the input.

	extension

	Operator in a discretization mapping a concrete
(finite-dimensional) object to an abstract (infinite-dimensional) one.
Example: LinearInterpolation.

	in-place evaluation

	Operator evaluation method which uses an existing data container to store
the result. Usually more efficient than out-of-place evaluation
since no new memory is allocated and no data is copied.

	meshgrid

	Tuple of arrays defining a tensor grid by all possible combinations of entries, one from each
array. In 2 dimensions, for example, the arrays [1, 2] and [-1, 0, 1] define the grid
points (1, -1), (1, 0), (1, 1), (2, -1), (2, 0), (2, 1).

	operator

	Mathematical notion for a mapping between arbitrary vector spaces. This includes the important
special case of an operator taking a (discretized) function as an input and returning another
function. For example, the Fourier Transform maps a function to its transformed version.
Operators of this type are the most prominent use case in ODL. See
the in-depth guide on operators for details on their implementation.

	order

	Ordering of the axes in a multi-dimensional array with linear (one-dimensional) storage.
For C ordering ('C'), the last axis has smallest stride (varies fastest), and the first
axis has largest stride (varies slowest). Fortran ordering ('F') is the exact opposite.

	out-of-place evaluation

	Operator evaluation method which creates a new data container to store
the result. Usually less efficient than in-place evaluation
since new memory is allocated and data needs to be copied.

	range

	Set of elements to which an operator maps, i.e. in which the result of
an operator evaluation lies.

	restriction

	Operator in a discretization mapping an abstract
(infinite-dimensional) object to a concrete (finite-dimensional) one.
Example: PointCollocation.

	vectorization

	Ability of a function to be evaluated on a grid in a single call rather
than looping over the grid points. Vectorized evaluation gives a huge
performance boost compared to Python loops (at least if there is no
JIT) since loops are implemented in optimized C code.

The vectorization concept in ODL differs slightly from the one in NumPy
in that arguments have to be passed as a single tuple rather than a
number of (positional) arguments. See numpy vectorization [http://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html] for more
details.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

Mathematics behind ODL

This section explains the mathematical concepts on which ODL is built.

	Discretizations
	Mathematical background

	Example

	Useful Wikipedia articles

	Transformations
	Fourier Transform

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Mathematics behind ODL

Discretizations

Mathematical background

In mathematics, the term discretization stands for the transition from abstract, continuous,
often infinite-dimensional objects to concrete, discrete, finite-dimensional counterparts. We define
discretizations as tuples encompassing all necessary aspects involved in this transition. Let
[image: \mathcal{X}] be an arbitrary set, [image: \mathbb{F}^n] be the set of [image: n]-tuples where
each component lies in [image: \mathbb{F}]. We define two mappings

[image: \mathcal{R}_\mathcal{X}: \mathcal{X} \to \mathbb{F}^n, \mathcal{E}_\mathcal{X}: \mathbb{F}^n \to \mathcal{X},]

which we call restriction and extension, respectively. Then, the discretization of
[image: \mathcal{X}] with respect to [image: \mathbb{F}^n] and the above operators is defined as the
tuple

[image: \mathcal{D}(\mathcal{X}) = (\mathcal{X}, \mathbb{F}^n, \mathcal{R}_\mathcal{X}, \mathcal{E}_\mathcal{X}).]

The following abstract diagram visualizes a discretization:

[image: ../_images/discr.png]

Example

Let [image: \mathcal{X} = C([0, 1])] be the space of real-valued
continuous functions on the interval [image: [0, 1]], and let [image: x_1 < \dots < x_n]
be ordered sampling points in [image: [0, 1]].

Restriction operator:

We define the grid collocation operator as

[image: \mathcal{C}: \mathcal{X} \to \mathbb{R}^n, \mathcal{C}(f) := \big(f(x_1), \dots, f(x_n)\big).]

The abstract object in this case is the input function [image: f], and
the operator evaluates this function at the given points, resulting in
a vector in [image: \mathbb{R}^n].

This operator is implemented as PointCollocation.

Extension operator:

Let discrete values [image: \bar f \in \mathbb{R}^n] be given. Consider the linear interpolation
of those values at a point [image: x \in [0, 1]]:

[image: I(\bar f; x) := (1 - \lambda(x)) f_i + \lambda(x) f_{i+1}, \lambda(x) = \frac{x - x_i}{x_{i+1} - x_i},]

where [image: i] is the index such that [image: x \in [x_i, x_{i+1})].

Then we can define the linear interpolation operator as

[image: \mathcal{L} : \mathbb{R}^n \to C([0, 1]), \mathcal{L}(\bar f) := I(\bar f; \cdot),]

where [image: I(\bar f; \cdot)] stands for the function
[image: x \mapsto I(\bar f; x)].

Hence, this operator maps the finite array [image: \bar f \in \mathbb{R}^n]
to the abstract interpolating function [image: I(\bar f; \cdot)].

This interpolation scheme is implemented in the LinearInterpolation operator.

Useful Wikipedia articles

	Discretization [https://en.wikipedia.org/wiki/Discretization]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Mathematics behind ODL

Transformations

This section contains the mathematical descriptions of (integral) transforms implemented in ODL.

	Fourier Transform
	Background
	Definition and basic properties

	Further Properties

	Discretized Fourier Transform
	General case

	Regular grids

	Choice of [image: \xi_0]

	The factor [image: \widehat{\phi}(s\xi_j)]

	Inverse transform

	Useful Wikipedia articles

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	Mathematics behind ODL

 	Transformations

Fourier Transform

Background

Definition and basic properties

The Fourier Transform (FT) of a function [image: f] belonging to the Lebesgue Space [https://en.wikipedia.org/wiki/Lp_space]
[image: L^1(\mathbb{R})] is defined as

(1)[image: \widehat{f}(\xi) = \mathcal{F}(f)(\xi) = (2\pi)^{-\frac{1}{2}} \int_{\mathbb{R}} f(x)\ e^{-i x \xi} \, \mathrm{d}x.]

By unique continuation, the bounded FT operator can be
extended [https://en.wikipedia.org/wiki/Fourier_transform#On_Lp_spaces] to
[image: L^p(\mathbb{R})] for [image: p \in [1, 2]], yielding a mapping

[image: \mathcal{F}: L^p(\mathbb{R}) \longrightarrow L^q(\mathbb{R}), \quad q = \frac{p}{p-1},]

where [image: q] is the conjugate exponent of [image: p] (for [image: p=1] one sets [image: q=\infty]).
Finite exponents larger than 2 also allow the extension of the operator but require the notion of
Distributions [https://en.wikipedia.org/wiki/Distribution_(mathematics)] to characterize its range. See [SW1971] for further details.

The inverse of [image: \mathcal{F}] on its range is given by the formula

(2)[image: \widetilde{\phi}(x) = \mathcal{F}^{-1}(\phi)(x) = (2\pi)^{-\frac{1}{2}} \int_{\mathbb{R}} \phi(\xi)\ e^{i \xi x}\, \mathrm{d}\xi.]

For [image: p = 2], the conjugate exponent is [image: q = 2], and the FT is a unitary
operator on [image: L`2(\mathbb{R})] according to Parseval’s Identity [https://en.wikipedia.org/wiki/Parseval’s_identity]

[image: \int_{\mathbb{R}} \lvert f(x)\rvert^2\, \mathrm{d}x = \int_{\mathbb{R}} \lvert \widetilde{f}(\xi) \rvert^2\, \mathrm{d}\xi,]

which implies that its adjoint is its inverse, [image: \mathcal{F}^* = \mathcal{F}^{-1}].

Further Properties

(3)[image: \mathcal{F^{-1}}(\phi) = \mathcal{F}(\check\phi) = \mathcal{F}(\phi)(-\cdot) = \overline{\mathcal{F}(\overline{\phi})} = \mathcal{F}^3(\phi), \quad \check\phi(x) = \phi(-x), \mathcal{F}\big(f(\cdot - b)\big)(\xi) = e^{-i b \xi} \widehat{f}(\xi), \mathcal{F}\big(f(a \cdot)\big)(\xi) = a^{-1} \widehat{f}(a^{-1}\xi), \frac{\mathrm{d}}{\mathrm{d} \xi} \widehat{f}(\xi) = \mathcal{F}(-i x f)(\xi) \mathcal{F}(f')(\xi) = i \xi \widehat{f}(\xi).]

The first identity implies in particular that for real-valued [image: f], it is
[image: \overline{\mathcal{F}(\phi)}(\xi) = \mathcal{F}(\phi)(-\xi)], i.e. the FT is
completely known already from the its values in a half-space only. This property is later exploited
to reduce storage.

In [image: d] dimensions, the FT is defined as

[image: \mathcal{F}(f)(\xi) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{R}^d} f(x)\ e^{-i x^{\mathrm{T}}\xi} \, \mathrm{d}x]

with the usual inner product [image: x^{\mathrm{T}}\xi = \sum_{k=1}^d x_k \xi_k] in
[image: \mathbb{R}^d]. The identities (3) also hold in this case with obvious
modifications.

Discretized Fourier Transform

General case

The approach taken in ODL for the discretization of the FT follows immediately from the way
Discretizations are defined, but the original inspiration for it came from the book
[Pre+2007], Section 13.9 “Computing Fourier Integrals Using the FFT”.

Discretization of the Fourier transform operator means evaluating the Fourier integral
(1) on a discretized function

(4)[image: f(x) = \sum_{k=0}^{n-1} f_k \phi_k(x)]

with coefficients [image: \bar f = (f_0, \dots, f_{n-1}) \in \mathbb{C}^n] and functions
[image: \phi_0, \dots, \phi_{n-1}]. This approach follows from the way , but can be
We consider in particular functions generated from a single
kernel [image: \phi] via

[image: \phi_k(x) = \phi\left(\frac{x - x_k}{s_k} \right),]

where [image: x_0 < \dots < x_{n-1}] are sampling points and [image: s_k > 0] scaling factors. Using
the shift and scaling properties in (3) yields

(5)[image: \widehat{f}(\xi) = \sum_{k=0}^{n-1} f_k \widehat{\phi_k}(\xi) = \sum_{k=0}^{n-1} f_k\, s_k \widehat{\phi}(s_k\xi) e^{-i x_k \xi}.]

There exist methods for the fast approximation of such sums for a general choice of frequency
samples [image: \xi_m], e.g. NFFT [https://github.com/NFFT/nfft].

Regular grids

For regular grids

(6)[image: x_k = x_0 + ks, \quad \xi_j = \xi_0 + j\sigma,]

the evaluation of the integral can be written in the form which uses trigonometric sums
as computed in FFTW [http://www.fftw.org/fftw3_doc/What-FFTW-Really-Computes.html] or in Numpy [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#implementation-details]:

(7)[image: \hat f_j = \sum_{k=0}^{n-1} f_k e^{-i 2\pi jk/n}.]

Hence, the Fourier integral evaluation can be built around established libraries with simple pre-
and post-processing steps.

With regular grids, the discretized integral (5) evaluated at
[image: \xi = \xi_j], can be expanded to

[image: \widehat{f}(\xi_j) = s \widehat{\phi}(s\xi_j) e^{-i x_0\xi_j} \sum_{k=0}^{n-1} f_k\, e^{-i k s \xi_0}\, e^{-i jk s\sigma}]

To reach the form (7), the factor depending on both indices [image: j] and [image: k]
must agree with the corresponding factor in the FFT sum. This is achieved by setting

(8)[image: \sigma = \frac{2\pi}{ns},]

finally yielding the representation

(9)[image: \hat f_j = \widehat{f}(\xi_j) = s \widehat{\phi}(s\xi_j) e^{-i x_0\xi_j} \sum_{k=0}^{n-1} f_k\, e^{-i k s \xi_0}\, e^{-i 2\pi jk/n}.]

Choice of [image: \xi_0]

There is a certain degree of freedom in the choice of the most negative frequency [image: \xi_0].
Usually one wants to center the Fourier space grid around zero since most information is typically
concentrated there. Point-symmetric grids are the standard choice, however sometimes one explicitly
wants to include (for even [image: n]) or exclude (for odd [image: n]) the zero frequency from the
grid, which is achieved by shifting the frequency [image: xi_0] by [image: -\sigma/2]. This results in
two possible choices

[image: \xi_{0, \mathrm{n}} = -\frac{\pi}{s} + \frac{\pi}{sn} \quad \text{(no shift)}, \xi_{0, \mathrm{s}} = -\frac{\pi}{s} \quad \text{(shift)}.]

For the shifted frequency, the pre-processing factor in the sum in
(9) can be simplified to

[image: e^{-i k s \xi_0} = e^{i k \pi} = (-1)^k,]

which is favorable for real-valued input [image: \bar f] since this first operation preserves
this property. For half-complex transforms, shifting is required.

The factor [image: \widehat{\phi}(s\xi_j)]

In (9), the FT of the kernel [image: \phi] appears as post-processing factor.
We give the explicit formulas for the two standard discretizations currently used in ODL, which
are nearest neighbor interpolation

[image: \phi_{\mathrm{nn}}(x) = \begin{cases} 1, & \text{if } -1/2 \leq x < 1/2, \\ 0, & \text{else,} \end{cases}]

and linear interpolation

[image: \phi_{\mathrm{lin}}(x) = \begin{cases} 1 - \lvert x \rvert, & \text{if } -1 \leq x \leq 1, \\ 0, & \text{else.} \end{cases}]

Their Fourier transforms are given by

[image: \widehat{\phi_{\mathrm{nn}}}(\xi) = (2\pi)^{-1/2} \mathrm{sinc}(\xi/2), \widehat{\phi_{\mathrm{lin}}}(\xi) = (2\pi)^{-1/2} \mathrm{sinc}^2(\xi/2).]

Since their arguments [image: s\xi_j = s\xi_0 + 2\pi/n] lie between [image: -\pi] and [image: \pi],
these functions introduce only a slight taper towards higher frequencies given the fact that the
first zeros lie at [image: \pm 2\pi].

Inverse transform

According to (2), the inverse of the continuous Fourier transform is given by
the same formula as the forward transform (1), except for a switched sign in the
complex exponential. Hence, this operator can rather be viewed as a variation of the forward FT,
and it is implemented via a sign parameter in FourierTransform.

The inverse of the discretized formula (9) is instead gained directly using
the identity

(10)[image: \sum_{j=0}^{N-1} e^{i 2\pi \frac{(l-k)j}{N}} &= \sum_{j=0}^{N-1} \Big(e^{i 2\pi \frac{(l-k)}{N}} \Big)^j = \begin{cases} N, & \text{if } l = k, \\ \frac{1 - e^{i 2\pi (l-k)}}{1 - e^{i 2\pi (l-k)/N}} = 0, & \text{else} \end{cases}\\ &= N\, \delta_{l, k}.]

By dividing (9) with the factor

[image: \alpha_j = s\widehat{\psi}(s\xi_j)\, e^{- i x_0 \xi_j}]

before the sum, multiplying with the exponential factor [image: e^{i 2\pi \frac{lj}{N}}] and
summing over [image: j], the coefficients [image: f_k] can be recovered:

[image: \sum_{j=0}^{N-1} \hat f_j\, \frac{1}{\alpha_j}\, e^{i 2\pi \frac{lj}{N}} &= \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \bar f_k\, e^{- i 2\pi \frac{jk}{N}} e^{i 2\pi \frac{lj}{N}} &= \sum_{k=0}^{N-1} \bar f_k\, N \delta_{l,k} &= N\, \bar f_l.]

Hence, the inversion formula for the discretized FT reads as

(11)[image: f_k = e^{i k s\xi_0}\, \frac{1}{N} \sum_{j=0}^{N-1} \hat f_j \, \frac{1}{s\widehat{\psi}(s\xi_j)}\, e^{i x_0\xi_j}\, e^{i 2\pi \frac{kj}{N}},]

which can be calculated in the same manner as the forward FT, basically by switching the roles of
pre- and post-processing steps and flipping the sign in the complex exponentials.

Useful Wikipedia articles

	Fourier Transform [https://en.wikipedia.org/wiki/Fourier_Transform]

	Lebesgue Space [https://en.wikipedia.org/wiki/Lp_space]

	Distributions [https://en.wikipedia.org/wiki/Distribution_(mathematics)]

	Parseval’s Identity [https://en.wikipedia.org/wiki/Parseval’s_identity]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

Release Notes

ODL 0.2.2 Release Notes (2016-03-11)

From this release on, ODL can be installed through pip directly from the Python package index.

ODL 0.2.1 Release Notes (2016-03-11)

Fix for the version number in setup.py.

ODL 0.2 Release Notes (2016-03-11)

This release adds the functionality of the Fourier Transform in arbitrary dimensions. The
operator comes in two different flavors: the “bare”, trigonometric-sum-only
Discrete Fourier Transform [https://en.wikipedia.org/wiki/Discrete_Fourier_transform] and the discretization of the continuous Fourier Transform [https://en.wikipedia.org/wiki/Fourier_transform].

New Features

Fourier Transform (FT)

The FT is an operator mapping a function to its transformed version (shown for 1d):

[image: \widehat{f}(\xi) = \mathcal{F}(f)(\xi) = (2\pi)^{-\frac{1}{2}} \int_{\mathbb{R}} f(x)\ e^{-i x \xi} \, \mathrm{d}x, \quad \xi\in\mathbb{R}.]

This implementation acts on discretized functions and accounts for scaling and shift of the
underlying grid as well as the type of discretization used. Supported backends are Numpy’s
FFTPACK based transform [http://docs.scipy.org/doc/numpy/reference/routines.fft.html] and pyFFTW [https://pypi.python.org/pypi/pyFFTW] (Python wrapper for FFTW [http://fftw.org/]). The implementation has full
support for the wrapped backends, including

	Forward and backward transforms,

	Half-complex transfroms, i.e. real-to-complex transforms where roughly only half of the
coefficients need to be stored,

	Partial transforms along selected axes,

	Computation of efficient FFT plans (pyFFTW only).

Discrete Fourier Transform (DFT)

This operator merely calculates the trigonometric sum

[image: \hat f_j = \sum_{k=0}^{n-1} f_k\, e^{-i 2\pi jk/n},\quad j=0, \dots, n-1]

without accounting for shift and scaling of the underlying grid. It supports the same features of
the wrapped backends as the FT.

Further additions

	The weighting attribute in FnBase is now public and can be used to initialize a new space.

	The FnBase classes now have a default_dtype static method.

	A discr_sequence_space has been added as a simple implementation of finite sequences with
multi-indexing.

	DiscreteLp and FunctionSpace elements now have real and imag with setters as well as a
conj() method.

	FunctionSpace explicitly handles output data type and allows this attribute to be chosen during
initialization.

	FunctionSpace, FnBase and DiscreteLp spaces support creation of a copy with different data type
via the astype() method.

	New conj_exponent() utility to get the conjugate of a given exponent.

Improvements

	Handle some not-so-unlikely corner cases where vectorized functions don’t behave as they should.
The main issue was the way Python 2 treats comparisons of tuples against scalars (Python 3 raises
an exception which is correctly handled by the subsequent code). In Python 2, the following
happens:

>>> t = ()
>>> t > 0
True
>>> t = (-1,)
>>> t > 0
True

This is especially unfortunate if used as t[t > 0] in 1d functions, when t is a
meshgrid sequence (of 1 element). In this case, t > 0 evaluates to True, which
is treated as 1 in the index expression, which in turn will raise an IndexError since the
sequence has only length one. This situation is now properly caught.

	x ** 0 evaluates to the one() space element if implemented.

Changes

	Move fast_1d_tensor_mult to the numerics.py module.

ODL 0.1 Release Notes (2016-03-08)

First official release.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

References

	[BB1988]	Barzilai, J, and Borwein, J M. Two-point step size
gradient methods. IMA Journal of Numerical Analysis, 8 (1988),
pp 141–148.

	[Bro1965]	Broyden, C G. A class of methods for solving nonlinear
simultaneous equations. Mathematics of computation, 33 (1965),
pp 577–593.

	[BV2004]	Boyd, S, and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004.

	[CP2011a]	Chambolle, Antonin and Pock, Thomas. A First-Order
Primal-Dual Algorithm for Convex Problems with Applications to
Imaging. Journal of Mathematical Imaging and Vision, 40 (2011),
pp 120-145.

	[CP2011b]	Chambolle, Antonin and Pock, Thomas. Diagonal
preconditioning for first order primal-dual algorithms in convex
optimization. 2011 IEEE International Conference on Computer Vision
(ICCV), 2011, pp 1762-1769.

	[GNS2009]	Griva, I, Nash, S G, and Sofer, A. Linear and nonlinear
optimization. Siam, 2009.

	[Kva1991]	Kvaalen, E. A faster Broyden method. BIT Numerical
Mathematics 31 (1991), pp 369–372.

	[Okt2015]	Oktem, O. Mathematics of electron tomography. In:
Scherzer, O. Handbook of Mathematical Methods in Imaging.
Springer, 2015, pp 937–1031.

	[PB2014]	Parikh, Neal and Boyd, Stephen. Proximal Algorithms.
Foundations and Trends in Optimization, 1 (2014), pp 127-239.

	[Pre+2007]	Press, W H, Teukolsky, S A, Vetterling, W T, and Flannery, B P.
Numerical Recipes in C - The Art of Scientific Computing (Volume 3).
Cambridge University Press, 2007.

	[Ray1997]	Raydan, M. The Barzilai and Borwein method for the
large scale unconstrained minimization problem. SIAM J. Optim.,
7 (1997), pp 26–33.

	[Roc1970]	Rockafellar, R. Tyrrell. Convex analysis. Princeton
University Press, 1970.

	[Sid+2012]	Sidky, Emil Y, Jorgensen, Jakob H, and Pan, Xiaochuan.
Convex optimization problem prototyping for image reconstruction in
computed tomography with the Chambolle-Pock algorithm. Physics in
Medicine and Biology, 57 (2012), pp 3065-3091.

	[SW1971]	Stein, E and Weiss, G.
Introduction to Fourier Analysis on Euclidean Spaces.
Princeton University Press, 1971.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

odl

ODL is a functional analysis library with a focus on discretization.

ODL suppors abstract sets, linear vector spaces defined on such
and Operators/Functionals defined on these sets. It is intended
to be used to write general code and faciliate code reuse.

Modules

	diagnostics
	examples

	operator

	space

	discr
	discr_mappings

	discr_ops

	discretization

	grid

	lp_discr

	partition

	operator
	default_ops

	operator

	oputils

	pspace_ops

	set
	domain

	pspace

	sets

	space

	solvers
	advanced

	findroot

	iterative

	linear

	scalar

	util

	vector

	space
	base_ntuples

	cu_ntuples

	fspace

	ntuples

	space_utils

	tomo
	backends

	geometry

	operators

	util

	trafos
	fourier

	wavelet

	util
	graphics

	numerics

	phantom

	testutils

	ufuncs

	utility

	vectorization

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

diagnostics

Automated tests for ODL.

Modules

	examples
	samples

	scalar_examples

	vector_examples

	operator
	OperatorTest

	space
	SpaceTest

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

examples

Functions for generating standardized examples in spaces.

Functions

	samples(*sets)
	Generate some samples from the given sets.

	scalar_examples(field)
	Generate example scalars in field.

	vector_examples(space)
	Generate example vectors in space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	examples

samples

	
odl.diagnostics.examples.samples(*sets)

	Generate some samples from the given sets.

Currently supports vectors according to vector_examples
and scalars according to scalar_examples.

	Parameters:	*sets : Set instance(s)

	Returns:	samples : generator

Generator that yields tuples of examples from the sets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	examples

scalar_examples

	
odl.diagnostics.examples.scalar_examples(field)

	Generate example scalars in field.

	Parameters:	field : Field

The field to generate examples from

	Returns:	examples : generator

Yields elements in field

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	examples

vector_examples

	
odl.diagnostics.examples.vector_examples(space)

	Generate example vectors in space.

	Parameters:	space : LinearSpace

The space to generate examples from

	Returns:	examples : generator

Yields tuples (string, LinearSpaceVector)
where string is a short description of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

operator

Standardized tests for Operator‘s.

Classes

	OperatorTest(operator[,operator_norm])
	Automated tests for Operator implementations.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	diagnostics

 	operator

OperatorTest

	
class odl.diagnostics.operator.OperatorTest(operator, operator_norm=None)

	Bases: object

Automated tests for Operator implementations.

This class allows users to automatically test various
features of an Operator such as linearity and the
adjoint definition.

Methods

	__eq__
	Return self==value.

	adjoint()
	Verify that Operator.adjoint works appropriately.

	derivative([step])
	Verify that Operator.derivative works appropriately.

	linear()
	Verify that the operator is actually linear.

	norm()
	Estimate the operator norm of the operator.

	run_tests()
	Run all tests on this operator.

	self_adjoint()
	Verify (Ax, y) = (x, Ay)

	
__init__(operator, operator_norm=None)

	Create a new instance

	Parameters:	operator : Operator

The operator to run tests on

operator_norm : float

The norm of the operator, used for error estimates
can be estimated otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	diagnostics

 	operator

 	OperatorTest

OperatorTest.adjoint

	
OperatorTest.adjoint()

	Verify that Operator.adjoint works appropriately.

References

Wikipedia article on Adjoint [https://en.wikipedia.org/wiki/Adjoint].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	operator

 	OperatorTest

OperatorTest.derivative

	
OperatorTest.derivative(step=0.0001)

	Verify that Operator.derivative works appropriately.

References

Wikipedia article on Derivative [https://en.wikipedia.org/wiki/Derivative].
Wikipedia article on Frechet derivative [https://en.wikipedia.org/wiki/Fr%C3%A9chet_derivative].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	operator

 	OperatorTest

OperatorTest.linear

	
OperatorTest.linear()

	Verify that the operator is actually linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	operator

 	OperatorTest

OperatorTest.norm

	
OperatorTest.norm()

	Estimate the operator norm of the operator.

The norm is estimated by calculating

A(x).norm() / x.norm()

for some nonzero x

	Returns:	norm : float

Estimate of operator norm

References

Wikipedia article on Operator norm [https://en.wikipedia.org/wiki/Operator_norm].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	operator

 	OperatorTest

OperatorTest.run_tests

	
OperatorTest.run_tests()

	Run all tests on this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	operator

 	OperatorTest

OperatorTest.self_adjoint

	
OperatorTest.self_adjoint()

	Verify (Ax, y) = (x, Ay)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

space

Standardized tests for LinearSpace‘s.

Classes

	SpaceTest(space[,eps])
	Automated tests for LinearSpace instances.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

SpaceTest

	
class odl.diagnostics.space.SpaceTest(space, eps=1e-05)

	Bases: object

Automated tests for LinearSpace instances.

This class allows users to automatically test various
features of an LinearSpace such as linearity and the
various operators.

Methods

	__eq__
	Return self==value.

	_lincomb()
	Check linear combination.

	contains()
	Verify LinearSpace.__contains__.

	dist()
	Verify LinearSpace.dist.

	element()
	Verify LinearSpace.element

	equals()
	Verify LinearSpace.__eq__.

	field()
	Verify LinearSpace.field

	inner()
	Verify LinearSpace.inner.

	linearity()
	Verify the linear space properties by examples.

	multiply()
	Verify LinearSpace.multiply.

	norm()
	Verify LinearSpace.norm.

	run_tests()
	Run all tests on this space.

	vector()
	Verify LinearSpaceVector.

	vector_assign()
	Verify LinearSpaceVector.assign.

	vector_copy()
	Verify LinearSpaceVector.copy.

	vector_equals()
	Verify LinearSpaceVector.__eq__.

	vector_set_zero()
	Verify LinearSpaceVector.set_zero.

	vector_space()
	Verify LinearSpaceVector.space.

	
__init__(space, eps=1e-05)

	Initialize a new instance.

	Parameters:	space : LinearSpace

The space that should be tested

eps : float, optional

Precision of the tests.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest._lincomb

	
SpaceTest._lincomb()

	Check linear combination.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.contains

	
SpaceTest.contains()

	Verify LinearSpace.__contains__.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.dist

	
SpaceTest.dist()

	Verify LinearSpace.dist.

The dist satisfies properties

positivity
d(x, y) >= 0

coincidence
d(x, y) = 0 iff x = y

symmetry
d(x, y) = d(y, x)

triangle inequality
d(x, z) = d(x, y) + d(y, z)

References

Wikipedia article on metric [https://en.wikipedia.org/wiki/Metric_(mathematics)]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.element

	
SpaceTest.element()

	Verify LinearSpace.element

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.equals

	
SpaceTest.equals()

	Verify LinearSpace.__eq__.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.field

	
SpaceTest.field()

	Verify LinearSpace.field

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.inner

	
SpaceTest.inner()

	Verify LinearSpace.inner.

The inner product satisfies properties such as

conjugate symmetry
(x, y) = (y, x)^* (^* complex conjugate)

linearity
(a * x, y) = a * (x, y)
(x + y, z) = (x, z) + (y, z)

positivity
(x, x) >= 0

References

Wikipedia article on inner product [https://en.wikipedia.org/wiki/Inner_product_space].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.linearity

	
SpaceTest.linearity()

	Verify the linear space properties by examples.

These properties include things such as associativity

x + y = y + x

and identity of the LinearSpace.zero element

x + 0 = x

References

Wikipedia article on Vector space [https://en.wikipedia.org/wiki/Vector_space].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.multiply

	
SpaceTest.multiply()

	Verify LinearSpace.multiply.

Multiplication satisfies

Zero element
0 * x = 0

Commutativity
x * y = y * x

Associativity
x * (y * z) = (x * y) * z

Distributivity
a * (x + y) = a * x + a * y
x * (y + z) = x * y + x * z

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.norm

	
SpaceTest.norm()

	Verify LinearSpace.norm.

The norm satisfies properties

linearity
||a * x|| = |a| * ||x||

triangle inequality
||x + y|| = ||x|| + ||y||

separation
||x|| = 0 iff x = 0

positivity
||x|| >= 0

References

Wikipedia article on norm [https://en.wikipedia.org/wiki/Norm_(mathematics)].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.run_tests

	
SpaceTest.run_tests()

	Run all tests on this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.vector

	
SpaceTest.vector()

	Verify LinearSpaceVector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.vector_assign

	
SpaceTest.vector_assign()

	Verify LinearSpaceVector.assign.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.vector_copy

	
SpaceTest.vector_copy()

	Verify LinearSpaceVector.copy.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.vector_equals

	
SpaceTest.vector_equals()

	Verify LinearSpaceVector.__eq__.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.vector_set_zero

	
SpaceTest.vector_set_zero()

	Verify LinearSpaceVector.set_zero.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	diagnostics

 	space

 	SpaceTest

SpaceTest.vector_space

	
SpaceTest.vector_space()

	Verify LinearSpaceVector.space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

discr

Discretizations in ODL.

Modules

	discr_mappings
	FunctionSetMapping

	LinearInterpolation

	NearestInterpolation

	PerAxisInterpolation

	PointCollocation

	discr_ops
	Divergence

	Gradient

	Laplacian

	PartialDerivative

	finite_diff

	discretization
	Discretization

	DiscretizationVector

	RawDiscretization

	RawDiscretizationVector

	dspace_type

	grid
	RegularGrid

	TensorGrid

	sparse_meshgrid

	uniform_sampling

	uniform_sampling_fromintv

	lp_discr
	DiscreteLp

	DiscreteLpVector

	discr_sequence_space

	uniform_discr

	uniform_discr_frompartition

	uniform_discr_fromspace

	partition
	RectPartition

	uniform_partition

	uniform_partition_fromgrid

	uniform_partition_fromintv

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

discr_mappings

Mappings between abstract (continuous) and discrete sets.

Includes grid evaluation (collocation) and various interpolation
operators.

Classes

	FunctionSetMapping(map_type,fset,...[,linear])
	Abstract base class for function set discretization mappings.

	LinearInterpolation(fspace,partition,...)
	Linear interpolation interpolation as an Operator.

	NearestInterpolation(fset,partition,...)
	Nearest neighbor interpolation as an Operator.

	PerAxisInterpolation(fspace,partition,...)
	Interpolation scheme set for each axis individually.

	PointCollocation(ip_fset,partition,dspace,...)
	Function evaluation at grid points.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

FunctionSetMapping

	
class odl.discr.discr_mappings.FunctionSetMapping(map_type, fset, partition, dspace, linear=False, **kwargs)

	Bases: odl.operator.operator.Operator

Abstract base class for function set discretization mappings.

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	grid
	The sampling grid.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	order
	Axis ordering in the data storage.

	partition
	The underlying domain partition.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__(other)
	

	_call(x[,out])
	Implementation of the operator evaluation.

	derivative(point)
	Return the operator derivative at point.

	
__init__(map_type, fset, partition, dspace, linear=False, **kwargs)

	Initialize a new instance.

	Parameters:	map_type : {‘restriction’, ‘extension’}

The type of operator

fset : FunctionSet

The non-discretized (abstract) set of functions to be
discretized

partition : RectPartition

Partition of (a subset of) fset.domain based on a
TensorGrid

dspace : NtuplesBase

Data space providing containers for the values of a
discretized object. Its NtuplesBase.size must be equal
to the total number of grid points.

linear : bool

Create a linear operator if True, otherwise a non-linear
operator.

order : {‘C’, ‘F’}, optional

Ordering of the axes in the data storage. ‘C’ means the
first axis varies slowest, the last axis fastest;
vice versa for ‘F’.
Default: ‘C’

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.adjoint

	
FunctionSetMapping.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.domain

	
FunctionSetMapping.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.grid

	
FunctionSetMapping.grid

	The sampling grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.inverse

	
FunctionSetMapping.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.is_functional

	
FunctionSetMapping.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.is_linear

	
FunctionSetMapping.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.order

	
FunctionSetMapping.order

	Axis ordering in the data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.partition

	
FunctionSetMapping.partition

	The underlying domain partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.range

	
FunctionSetMapping.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.__call__

	
FunctionSetMapping.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.__eq__

	
FunctionSetMapping.__eq__(other)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping._call

	
FunctionSetMapping._call(x, out=None, **kwargs)

	Implementation of the operator evaluation.

This method is private backend for the evaluation of this
operator. It needs to match certain signature conventions,
and its implementation type is inferred from its signature.

The following signatures are allowed:

	Python 2 and 3:

	
	_call(self, x) –> out-of-place evaluation

	_call(self, vec, out) –> in-place evaluation

	_call(self, x, out=None) –> both

	Python 3 only:

	
	_call(self, x, *, out=None) (out as keyword-only
argument) –> both

For disambiguation, the instance name (the first argument) must
be ‘self’.

The name of the out argument must be ‘out’, the second
argument may have any name.

Additional variable **kwargs and keyword-only arguments
(Python 3 only) are also allowed.

	Parameters:	x : Operator.domain element-like

Element to which the operator is applied

out : Operator.range element, optional

Element to which the result is written

	Returns:	out : Operator.range element-like

Result of the evaluation. If out was provided, the
returned object is a reference to it.

Notes

The public call pattern op() using op.__call__ provides
a default implementation of the underlying in-place or
out-of-place call even if you choose the respective other
pattern.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	FunctionSetMapping

FunctionSetMapping.derivative

	
FunctionSetMapping.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

LinearInterpolation

	
class odl.discr.discr_mappings.LinearInterpolation(fspace, partition, dspace, **kwargs)

	Bases: odl.discr.discr_mappings.FunctionSetMapping

Linear interpolation interpolation as an Operator.

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	grid
	The sampling grid.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	order
	Axis ordering in the data storage.

	partition
	The underlying domain partition.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__(other)
	

	_call(x[,out])
	Create an interpolator from grid values x.

	derivative(point)
	Return the operator derivative at point.

	
__init__(fspace, partition, dspace, **kwargs)

	Initialize a new instance.

	Parameters:	fspace : FunctionSpace

The undiscretized (abstract) space of functions to be
discretized. Its field must be the same as that of data
space. The function domain must provide a
Set.contains_set method.

partition : RectPartition

Partition of (a subset of) fspace.domain based on a
TensorGrid

dspace : FnBase

Data space providing containers for the values of a
discretized object. Its NtuplesBase.size must be equal
to the total number of grid points, and its FnBase.field
must be the same as that of the function space.

order : {‘C’, ‘F’}, optional

Ordering of the axes in the data storage. ‘C’ means the
first axis varies slowest, the last axis fastest;
vice versa for ‘F’.
Default: ‘C’

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.adjoint

	
LinearInterpolation.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.domain

	
LinearInterpolation.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.grid

	
LinearInterpolation.grid

	The sampling grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.inverse

	
LinearInterpolation.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.is_functional

	
LinearInterpolation.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.is_linear

	
LinearInterpolation.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.order

	
LinearInterpolation.order

	Axis ordering in the data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.partition

	
LinearInterpolation.partition

	The underlying domain partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.range

	
LinearInterpolation.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.__call__

	
LinearInterpolation.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.__eq__

	
LinearInterpolation.__eq__(other)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation._call

	
LinearInterpolation._call(x, out=None)

	Create an interpolator from grid values x.

	Parameters:	x : FnBaseVector

The array of values to be interpolated

out : FunctionSpaceVector, optional

Vector in which to store the interpolator

	Returns:	out : FunctionSpaceVector

Linear interpolator for the grid of this operator. If
out was provided, the returned object is a reference
to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	LinearInterpolation

LinearInterpolation.derivative

	
LinearInterpolation.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

NearestInterpolation

	
class odl.discr.discr_mappings.NearestInterpolation(fset, partition, dspace, **kwargs)

	Bases: odl.discr.discr_mappings.FunctionSetMapping

Nearest neighbor interpolation as an Operator.

Given points x1 < x2 < ... < xN, and values f1, ..., fN,
nearest neighbor interpolation at x is defined by:

I(x) = fj with j such that |x - xj| is minimal.

The ambiguity at the midpoints is resolved by preferring one of the
neighbors. For higher dimensions, this rule is applied per
component.

The nearest neighbor interpolation operator is defined as the
mapping from the values f1, ..., fN to the function I(x)
(as a whole).

In higher dimensions, this principle is applied per axis, the
only difference being the additional information about the ordering
of the axes in the flat storage array (C- vs. Fortran ordering).

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	grid
	The sampling grid.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	order
	Axis ordering in the data storage.

	partition
	The underlying domain partition.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__(other)
	

	_call(x[,out])
	Create an interpolator from grid values x.

	derivative(point)
	Return the operator derivative at point.

	
__init__(fset, partition, dspace, **kwargs)

	Initialize a new instance.

	Parameters:	fset : FunctionSet

The undiscretized (abstract) set of functions to be
discretized. The function domain must provide a
Set.contains_set method.

partition : RectPartition

Partition of (a subset of) ip_fset.domain based on a
spatial grid

dspace : NtuplesBase

Data space providing containers for the values of a
discretized object. Its NtuplesBase.size must be equal
to the total number of grid points.

variant : {‘left’, ‘right’}, optional

Behavior variant at midpoint between neighbors

‘left’ : favor left neighbor (default)

‘right’ : favor right neighbor

order : {‘C’, ‘F’}, optional

Ordering of the axes in the data storage. ‘C’ means the
first axis varies slowest, the last axis fastest;
vice versa for ‘F’.
Default: ‘C’

Notes

The distinction between ‘left’ and ‘right’ variants is currently
made by changing <= to < at one place. This difference
may not be noticable in some situations due to rounding errors.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.adjoint

	
NearestInterpolation.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.domain

	
NearestInterpolation.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.grid

	
NearestInterpolation.grid

	The sampling grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.inverse

	
NearestInterpolation.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.is_functional

	
NearestInterpolation.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.is_linear

	
NearestInterpolation.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.order

	
NearestInterpolation.order

	Axis ordering in the data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.partition

	
NearestInterpolation.partition

	The underlying domain partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.range

	
NearestInterpolation.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.__call__

	
NearestInterpolation.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.__eq__

	
NearestInterpolation.__eq__(other)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation._call

	
NearestInterpolation._call(x, out=None)

	Create an interpolator from grid values x.

	Parameters:	x : NtuplesVector

The array of values to be interpolated

out : FunctionSetVector, optional

Vector in which to store the interpolator

	Returns:	out : FunctionSetVector

Nearest-neighbor interpolator for the grid of this
operator. If out was provided, the returned object
is a reference to it.

See also

	LinearInterpolation

	(bi-/tri-/...)linear interpolation

Notes

Important: if called on a point array, the points are
assumed to be sorted in ascending order in each dimension
for efficiency reasons.

Nearest neighbor interpolation is the only scheme which works
with data of non-scalar type since it does not involve any
arithmetic operations on the values.

Examples

We test nearest neighbor interpolation with a non-scalar
data type in 2d:

>>> import numpy as np
>>> from odl import Rectangle, Strings, FunctionSet
>>> rect = Rectangle([0, 0], [1, 1])
>>> strings = Strings(1) # 1-char strings
>>> space = FunctionSet(rect, strings)

Partitioning the domain uniformly with no nodes on the boundary
(will shift the grid points):

>>> from odl import uniform_partition_fromintv, Ntuples
>>> part = uniform_partition_fromintv(rect, [4, 2],
... nodes_on_bdry=False)
>>> part.grid.coord_vectors
(array([0.125, 0.375, 0.625, 0.875]), array([0.25, 0.75]))

>>> dspace = Ntuples(part.size, dtype='U1')

Now we initialize the operator and test it with some points:

>>> interp_op = NearestInterpolation(space, part, dspace)
>>> values = np.array([c for c in 'mystring'])
>>> function = interp_op(values)
>>> print(function([0.3, 0.6])) # closest to index (1, 1) -> 3
t
>>> out = np.empty(2, dtype='U1')
>>> pts = np.array([[0.3, 0.6],
... [1.0, 1.0]])
>>> out = function(pts.T, out=out) # returns original out
>>> all(out == ['t', 'g'])
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	NearestInterpolation

NearestInterpolation.derivative

	
NearestInterpolation.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

PerAxisInterpolation

	
class odl.discr.discr_mappings.PerAxisInterpolation(fspace, partition, dspace, schemes, **kwargs)

	Bases: odl.discr.discr_mappings.FunctionSetMapping

Interpolation scheme set for each axis individually.

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	grid
	The sampling grid.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	nn_variants
	List of nearest neighbor variants, one for each axis.

	order
	Axis ordering in the data storage.

	partition
	The underlying domain partition.

	range
	Set in which the result of an evaluation of this operator lies.

	schemes
	List of interpolation schemes, one for each axis.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__(other)
	

	_call(x[,out])
	Create an interpolator from grid values x.

	derivative(point)
	Return the operator derivative at point.

	
__init__(fspace, partition, dspace, schemes, **kwargs)

	Initialize a new instance.

	Parameters:	fspace : FunctionSpace

The undiscretized (abstract) space of functions to be
discretized. Its field must be the same as that of data
space. The function domain must provide a
Set.contains_set method.

partition : RectPartition

Partition of (a subset of) fspace.domain based on a
TensorGrid

dspace : FnBase

Data space providing containers for the values of a
discretized object. Its NtuplesBase.size must be equal
to the total number of grid points, and its FnBase.field
must be the same as that of the function space.

schemes : str or sequence of str

Indicates which interpolation scheme to use for which axis.
A single string is interpreted as a global scheme for all
axes.

nn_variants : str or sequence of str, optional

Which variant (‘left’ or ‘right’) to use in nearest neighbor
interpolation for which axis. A single string is interpreted
as a global variant for all axes.
This option has no effect for schemes other than nearest
neighbor.
Default: ‘left’

order : {‘C’, ‘F’}, optional

Ordering of the axes in the data storage. ‘C’ means the
first axis varies slowest, the last axis fastest;
vice versa for ‘F’.
Default: ‘C’

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.adjoint

	
PerAxisInterpolation.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.domain

	
PerAxisInterpolation.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.grid

	
PerAxisInterpolation.grid

	The sampling grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.inverse

	
PerAxisInterpolation.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.is_functional

	
PerAxisInterpolation.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.is_linear

	
PerAxisInterpolation.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.nn_variants

	
PerAxisInterpolation.nn_variants

	List of nearest neighbor variants, one for each axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.order

	
PerAxisInterpolation.order

	Axis ordering in the data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.partition

	
PerAxisInterpolation.partition

	The underlying domain partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.range

	
PerAxisInterpolation.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.schemes

	
PerAxisInterpolation.schemes

	List of interpolation schemes, one for each axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.__call__

	
PerAxisInterpolation.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.__eq__

	
PerAxisInterpolation.__eq__(other)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation._call

	
PerAxisInterpolation._call(x, out=None)

	Create an interpolator from grid values x.

	Parameters:	x : FnBaseVector

The array of values to be interpolated

out : FunctionSpaceVector, optional

Vector in which to store the interpolator

	Returns:	out : FunctionSpaceVector

Per-axis interpolator for the grid of this operator. If
out was provided, the returned object is a reference
to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PerAxisInterpolation

PerAxisInterpolation.derivative

	
PerAxisInterpolation.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

PointCollocation

	
class odl.discr.discr_mappings.PointCollocation(ip_fset, partition, dspace, **kwargs)

	Bases: odl.discr.discr_mappings.FunctionSetMapping

Function evaluation at grid points.

This operator evaluates a given function in a set of points. These
points are given as the sampling grid of a partition of the
function domain. The result of this evaluation is an array of
function values at these points.

If, for example, a function is defined on the interval [0, 1],
and a partition divides the interval into N subintervals,
the resulting array will have length N. The sampling points
are defined by the partition, usually they are the midpoints
of the subintervals.

In higher dimensions, the same principle is applied, with the
only difference being the additional information about the ordering
of the axes in the flat storage array (C- vs. Fortran ordering).

This operator is the default ‘restriction’ used by all core
discretization classes.

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	grid
	The sampling grid.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	order
	Axis ordering in the data storage.

	partition
	The underlying domain partition.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__(other)
	

	_call(func[,out])
	Evaluate func at the grid of this operator.

	derivative(point)
	Return the operator derivative at point.

	
__init__(ip_fset, partition, dspace, **kwargs)

	Initialize a new instance.

	Parameters:	fset : FunctionSet

The non-discretized (abstract) set of functions to be
discretized. The function domain must provide a
Set.contains_set method.

partition : RectPartition

Partition of (a subset of) ip_fset.domain based on a
TensorGrid

dspace : NtuplesBase

Data space providing containers for the values of a
discretized object. Its NtuplesBase.size must be equal
to the total number of grid points.

order : {‘C’, ‘F’}, optional

Ordering of the axes in the data storage. ‘C’ means the
first axis varies slowest, the last axis fastest;
vice versa for ‘F’.
Default: ‘C’

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.adjoint

	
PointCollocation.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.domain

	
PointCollocation.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.grid

	
PointCollocation.grid

	The sampling grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.inverse

	
PointCollocation.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.is_functional

	
PointCollocation.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.is_linear

	
PointCollocation.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.order

	
PointCollocation.order

	Axis ordering in the data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.partition

	
PointCollocation.partition

	The underlying domain partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.range

	
PointCollocation.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.__call__

	
PointCollocation.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.__eq__

	
PointCollocation.__eq__(other)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation._call

	
PointCollocation._call(func, out=None)

	Evaluate func at the grid of this operator.

	Parameters:	func : FunctionSetVector

The function to be evaluated

out : NtuplesBaseVector, optional

Array to which the values are written. Its shape must be
(N,), where N is the total number of grid points. The
data type must be the same as in the dspace of this
mapping.

	Returns:	out : NtuplesBaseVector, optional

The function values at the grid points. If out was
provided, the returned object is a reference to it.

See also

odl.discr.grid.TensorGrid.meshgrid, numpy.meshgrid

Notes

This operator expects its input functions to be written in
a vectorization-conforming manner to ensure fast evaluation.
See the vectorization guide [https://odl.readthedocs.org/guide/in_depth/vectorization_guide.html] for a detailed introduction.

Examples

Define a set of functions from the rectangle [1, 3] x [2, 5]
to the real numbers:

>>> from odl import FunctionSpace, Rectangle
>>> rect = Rectangle([1, 3], [2, 5])
>>> funcset = FunctionSpace(rect)

Partition the rectangle by a tensor grid:

>>> from odl import TensorGrid, Rectangle, RectPartition, Rn
>>> rect = Rectangle([1, 3], [2, 5])
>>> grid = TensorGrid([1, 2], [3, 4, 5])
>>> partition = RectPartition(rect, grid)
>>> rn = Rn(grid.size)

Finally create the operator and test it on a function:

>>> coll_op = PointCollocation(funcset, partition, rn)
...
... # Properly vectorized function
>>> func_elem = funcset.element(lambda x: x[0] - x[1])
>>> coll_op(func_elem)
Rn(6).element([-2.0, -3.0, -4.0, -1.0, -2.0, -3.0])
>>> coll_op(lambda x: x[0] - x[1]) # Works directly
Rn(6).element([-2.0, -3.0, -4.0, -1.0, -2.0, -3.0])
>>> out = Rn(6).element()
>>> coll_op(func_elem, out=out) # In-place
Rn(6).element([-2.0, -3.0, -4.0, -1.0, -2.0, -3.0])

Fortran ordering:

>>> coll_op = PointCollocation(funcset, partition, rn, order='F')
>>> coll_op(func_elem)
Rn(6).element([-2.0, -1.0, -3.0, -2.0, -4.0, -3.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_mappings

 	PointCollocation

PointCollocation.derivative

	
PointCollocation.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

discr_ops

Operators defined on DiscreteLp.

Classes

	Divergence(space[,method])
	Divergence operator for DiscreteLp spaces.

	Gradient(space[,method])
	Spatial gradient operator for DiscreteLp spaces.

	Laplacian(space)
	Spatial Laplacian operator for DiscreteLp spaces.

	PartialDerivative(space[,axis,method,...])
	Calculate the discrete partial derivative along a given axis.

Functions

	finite_diff(f[,axis,dx,method,out])
	Calculate the partial derivative of f along a given axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

Divergence

	
class odl.discr.discr_ops.Divergence(space, method='forward')

	Bases: odl.operator.operator.Operator

Divergence operator for DiscreteLp spaces.

Calls helper function finite_diff for each component of the input
product space vector. For the adjoint of the Divergence operator to
match the negative Gradient operator implicit zero is assumed.

Attributes

	adjoint
	Return the adjoint operator.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Calculate the divergence of x.

	derivative(point)
	Return the operator derivative at point.

	
__init__(space, method='forward')

	Initialize a Divergence operator instance.

Zero padding is assumed for the adjoint of the Divergence
operator to match negative Gradient operator.

	Parameters:	space : DiscreteLp

The space of elements which the operator is acting on

method : {‘central’, ‘forward’, ‘backward’}, optional

Finite difference method to be used

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Divergence

Divergence.adjoint

	
Divergence.adjoint

	Return the adjoint operator.

Assuming implicit zero padding, the adjoint operator is given by the
negative of the Gradient operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Divergence

Divergence.domain

	
Divergence.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Divergence

Divergence.inverse

	
Divergence.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Divergence

Divergence.is_functional

	
Divergence.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Divergence

Divergence.is_linear

	
Divergence.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Divergence

Divergence.range

	
Divergence.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Divergence

Divergence.__call__

	
Divergence.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	discr

 	discr_ops

 	Divergence

Divergence._call

	
Divergence._call(x, out=None)

	Calculate the divergence of x.

	Parameters:	x : domain element

ProductSpaceVector to which the divergence operator
is applied

out : range element, optional

Output vector to which the result is written

	Returns:	out : range element

Result of the evaluation. If out is provided, the returned
object is a reference to it.

Examples

>>> from odl import uniform_discr
>>> data = np.array([[0., 1., 2., 3., 4.],
... [1., 2., 3., 4., 5.],
... [2., 3., 4., 5., 6.]])
>>> space = uniform_discr([0, 0], [3, 5], data.shape)
>>> div = Divergence(space)
>>> f = div.domain.element([data, data])
>>> div_f = div(f)
>>> print(div_f)
[[2.0, 2.0, 2.0, 2.0, -3.0],
 [2.0, 2.0, 2.0, 2.0, -4.0],
 [-1.0, -2.0, -3.0, -4.0, -12.0]]

Verify adjoint:

>>> g = div.range.element(data ** 2)
>>> adj_div_g = div.adjoint(g)
>>> g.inner(div_f) / f.inner(adj_div_g)
1.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Divergence

Divergence.derivative

	
Divergence.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

Gradient

	
class odl.discr.discr_ops.Gradient(space, method='forward')

	Bases: odl.operator.operator.Operator

Spatial gradient operator for DiscreteLp spaces.

Calls helper function finite_diff to calculate each component of the
resulting product space vector. For the adjoint of the Gradient
operator, zero padding is assumed to match the negative Divergence
operator

Attributes

	adjoint
	Return the adjoint operator.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Calculate the spatial gradient of x.

	derivative(point)
	Return the operator derivative at point.

	
__init__(space, method='forward')

	Initialize a Gradient operator instance.

Zero padding is assumed for the adjoint of the Gradient
operator to match negative Divergence operator.

	Parameters:	space : DiscreteLp

The space of elements which the operator is acting on.

method : {‘central’, ‘forward’, ‘backward’}, optional

Finite difference method to be used

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Gradient

Gradient.adjoint

	
Gradient.adjoint

	Return the adjoint operator.

Assuming implicit zero padding, the adjoint operator is given by the
negative of the Divergence operator.

The Divergence is constructed from a space as a product space
operator space^n --> space, hence we need to provide the domain of
this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Gradient

Gradient.domain

	
Gradient.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Gradient

Gradient.inverse

	
Gradient.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Gradient

Gradient.is_functional

	
Gradient.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Gradient

Gradient.is_linear

	
Gradient.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Gradient

Gradient.range

	
Gradient.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Gradient

Gradient.__call__

	
Gradient.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	discr

 	discr_ops

 	Gradient

Gradient._call

	
Gradient._call(x, out=None)

	Calculate the spatial gradient of x.

	Parameters:	x : domain element

Input vector to which the Gradient operator is applied

out : range element, optional

Output vector to which the result is written

	Returns:	out : range element

Result of the evaluation. If out is provided, the returned
object is a reference to it.

Examples

>>> from odl import uniform_discr
>>> data = np.array([[0., 1., 2., 3., 4.],
... [0., 2., 4., 6., 8.]])
>>> discr = uniform_discr([0, 0], [2, 5], data.shape)
>>> f = discr.element(data)
>>> grad = Gradient(discr)
>>> grad_f = grad(f)
>>> print(grad_f[0])
[[0.0, 1.0, 2.0, 3.0, 4.0],
 [0.0, -2.0, -4.0, -6.0, -8.0]]
>>> print(grad_f[1])
[[1.0, 1.0, 1.0, 1.0, -4.0],
 [2.0, 2.0, 2.0, 2.0, -8.0]]

Verify adjoint:

>>> g = grad.range.element((data, data ** 2))
>>> adj_g = grad.adjoint(g)
>>> print(adj_g)
[[0.0, -2.0, -5.0, -8.0, -11.0],
 [0.0, -5.0, -14.0, -23.0, -32.0]]
>>> g.inner(grad_f) / f.inner(adj_g)
1.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Gradient

Gradient.derivative

	
Gradient.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

Laplacian

	
class odl.discr.discr_ops.Laplacian(space)

	Bases: odl.operator.operator.Operator

Spatial Laplacian operator for DiscreteLp spaces.

Calls helper function finite_diff to calculate each component of the
resulting product space vector.

Outside the domain zero padding is assumed.

Attributes

	adjoint
	Return the adjoint operator.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Calculate the spatial Laplacian of x.

	derivative(point)
	Return the operator derivative at point.

	
__init__(space)

	Initialize a Laplacian operator instance.

	Parameters:	space : DiscreteLp

The space of elements which the operator is acting on

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Laplacian

Laplacian.adjoint

	
Laplacian.adjoint

	Return the adjoint operator.

The laplacian is self-adjoint, so this returns self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Laplacian

Laplacian.domain

	
Laplacian.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Laplacian

Laplacian.inverse

	
Laplacian.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Laplacian

Laplacian.is_functional

	
Laplacian.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Laplacian

Laplacian.is_linear

	
Laplacian.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Laplacian

Laplacian.range

	
Laplacian.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Laplacian

Laplacian.__call__

	
Laplacian.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	discr

 	discr_ops

 	Laplacian

Laplacian._call

	
Laplacian._call(x, out=None)

	Calculate the spatial Laplacian of x.

	Parameters:	x : domain element

Input vector to which the Laplacian operator is
applied

out : range element, optional

Output vector to which the result is written

	Returns:	out : range element

Result of the evaluation. If out is provided, the returned
object is a reference to it.

Examples

>>> from odl import uniform_discr
>>> data = np.array([[0., 0., 0.],
... [0., 1., 0.],
... [0., 0., 0.]])
>>> space = uniform_discr([0, 0], [3, 3], data.shape)
>>> f = space.element(data)
>>> lap = Laplacian(space)
>>> print(lap(f))
[[0.0, 1.0, 0.0],
 [1.0, -4.0, 1.0],
 [0.0, 1.0, 0.0]]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	Laplacian

Laplacian.derivative

	
Laplacian.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

PartialDerivative

	
class odl.discr.discr_ops.PartialDerivative(space, axis=0, method='forward', padding_method=None, padding_value=0, edge_order=None)

	Bases: odl.operator.operator.Operator

Calculate the discrete partial derivative along a given axis.

Calls helper function finite_diff to calculate finite difference.
Preserves the shape of the underlying grid.

Attributes

	adjoint
	Return the adjoint operator.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Apply gradient operator to x and store result in out.

	derivative(point)
	Return the operator derivative at point.

	
__init__(space, axis=0, method='forward', padding_method=None, padding_value=0, edge_order=None)

	Initialize an operator instance.

	Parameters:	space : DiscreteLp

The space of elements which the operator is acting on

axis : int, optional

The axis along which the partial derivative is evaluated

method : {‘central’, ‘forward’, ‘backward’}, optional

Finite difference method which is used in the interior of the
domain of f

padding_method : {‘constant’, ‘symmetric’}, optional

‘constant’ : Pads values outside the domain of f with a
constant value given by padding_value

‘symmetric’ : Pads with the reflection of the vector mirrored
along the edge of the array

If None is given, one-sided forward or backward differences
are used at the boundary

padding_value : float, optional

If padding_method is ‘constant’ f assumes
padding_value for indices outside the domain of f

edge_order : {1, 2}, optional

Edge-order accuracy at the boundaries if no padding is used. If
None the edge-order accuracy at endpoints corresponds to the
accuracy in the interior.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	PartialDerivative

PartialDerivative.adjoint

	
PartialDerivative.adjoint

	Return the adjoint operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	PartialDerivative

PartialDerivative.domain

	
PartialDerivative.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	PartialDerivative

PartialDerivative.inverse

	
PartialDerivative.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	PartialDerivative

PartialDerivative.is_functional

	
PartialDerivative.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	PartialDerivative

PartialDerivative.is_linear

	
PartialDerivative.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	PartialDerivative

PartialDerivative.range

	
PartialDerivative.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	PartialDerivative

PartialDerivative.__call__

	
PartialDerivative.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	discr

 	discr_ops

 	PartialDerivative

PartialDerivative._call

	
PartialDerivative._call(x, out=None)

	Apply gradient operator to x and store result in out.

	Parameters:	x : domain element

Input vector to which the operator is applied to

out : range element, optional

Output vector to which the result is written

	Returns:	out : range element

Result of the evaluation. If out is provided, the
returned object is a reference to it.

Examples

>>> from odl import uniform_discr
>>> data = np.array([[0., 1., 2., 3., 4.],
... [0., 2., 4., 6., 8.]])
>>> discr = uniform_discr([0, 0], [2, 1], data.shape)
>>> par_deriv = PartialDerivative(discr)
>>> f = par_deriv.domain.element(data)
>>> par_div_f = par_deriv(f)
>>> print(par_div_f)
[[0.0, 1.0, 2.0, 3.0, 4.0],
 [0.0, 1.0, 2.0, 3.0, 4.0]]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

 	PartialDerivative

PartialDerivative.derivative

	
PartialDerivative.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discr_ops

finite_diff

	
odl.discr.discr_ops.finite_diff(f, axis=0, dx=1.0, method='forward', out=None, **kwargs)

	Calculate the partial derivative of f along a given axis.

In the interior of the domain of f, the partial derivative is computed
using first-order accurate forward or backward difference or
second-order accurate central differences.

With padding the same method and thus accuracy is used on endpoints as
in the interior i.e. forward and backward differences use first-order
accuracy on edges while central differences use second-order accuracy at
edges.

Without padding one-sided forward or backward differences are used at
the boundaries. The accuracy at the endpoints can then also be
triggered by the edge order.

The returned array has the same shape as the input array f.

Per default forward difference with dx=1 and no padding is used.

	Parameters:	f : array-like

An N-dimensional array

axis : int, optional

The axis along which the partial derivative is evaluated

dx : float, optional

Scalar specifying the distance between sampling points along axis

method : {‘central’, ‘forward’, ‘backward’}, optional

	Finite difference method which is used in the interior of the domain

	of f.

padding_method : {‘constant’, ‘symmetric’}, optional

‘constant’ : Pads values outside the domain of f with a constant
value given by padding_value

‘symmetric’ : Pads with the reflection of the vector mirrored
along the edge of the array

If None is given, one-sided forward or backward differences
are used at the boundary.

padding_value : float, optional

If padding_method is ‘constant’ f assumes padding_value
for indices outside the domain of f

edge_order : {1, 2}, optional

Edge-order accuracy at the boundaries if no padding is used. If
None the edge-order accuracy at endpoints corresponds to the
accuracy in the interior. Default: None

out : numpy.ndarray, optional

An N-dimensional array to which the output is written. Has to have
the same shape as the input array f. Default: None

	Returns:	out : numpy.ndarray

N-dimensional array of the same shape as f. If out is
provided, the returned object is a reference to it.

Notes

Without padding the use of second-order accurate edges requires at
least three elements.

Central differences with padding cannot be used with first-order
accurate edges.

Forward and backward differences with padding use the first-order
accuracy on edges (as in the interior).

An edge-order accuracy different from the interior can only be triggered
without padding i.e. when one-sided differences are used at the edges.

Examples

>>> f = np.array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

>>> finite_diff(f)
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

Without arguments the above defaults to:

>>> finite_diff(f, axis=0, dx=1.0, method='forward', padding_method=None,
... edge_order=None)
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

>>> finite_diff(f, dx=0.5)
array([2., 2., 2., 2., 2., 2., 2., 2., 2., 2.])
>>> finite_diff(f, padding_method='constant')
array([1., 1., 1., 1., 1., 1., 1., 1., 1., -9.])

Central differences and different edge orders:

>>> finite_diff(1/2*f**2, method='central')
array([-0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> finite_diff(1/2*f**2, method='central', edge_order=1)
array([0.5, 1. , 2. , 3. , 4. , 5. , 6. , 7. , 8. , 8.5])

In-place evaluation:

>>> out = f.copy()
>>> out is finite_diff(f, out=out)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

discretization

Base classes for discretization.

Classes

	Discretization(uspace,dspace[,restr,ext])
	Abstract class for discretizations of linear vector spaces.

	DiscretizationVector(space,data)
	Representation of a Discretization element.

	RawDiscretization(uspace,dspace[,restr,ext])
	Abstract raw discretization class.

	RawDiscretizationVector(space,ntuple)
	Representation of a RawDiscretization element.

Functions

	dspace_type(space,impl[,dtype])
	Select the correct corresponding n-tuples space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

Discretization

	
class odl.discr.discretization.Discretization(uspace, dspace, restr=None, ext=None)

	Bases: odl.discr.discretization.RawDiscretization, odl.space.base_ntuples.FnBase

Abstract class for discretizations of linear vector spaces.

This variant of RawDiscretization adds linear structure
to all its members. The RawDiscretization.uspace is a
LinearSpace, the RawDiscretization.dspace
for the data representation is an implementation of
[image: \mathbb{F}^n], where [image: \mathbb{F}] is some
Field, and both RawDiscretization.restriction
and RawDiscretization.extension are linear
Operator‘s.

Attributes

	domain
	The domain of the continuous space.

	dspace
	The data space.

	dspace_type
	Data space type of this discretization.

	dtype
	The data type of each entry.

	element_type
	DiscretizationVector

	extension
	The operator mapping an n-tuple to a uspace element.

	field
	The field of this vector space.

	is_cn
	Return True if the space represents C^n, i.e.

	is_rn
	Return True if the space represents R^n, i.e.

	is_weighted
	Return True if the dspace is weighted.

	restriction
	The operator mapping a uspace element to an n-tuple.

	shape
	The shape of this space.

	size
	The number of entries per tuple.

	uspace
	The undiscretized space.

	weighting
	This space’s weighting scheme.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	_dist(x1,x2)
	Raw distance between two vectors.

	_divide(x1,x2,out)
	Raw pointwise multiplication of two vectors.

	_inner(x1,x2)
	Raw inner product of two vectors.

	_lincomb(a,x1,b,x2,out)
	Raw linear combination.

	_multiply(x1,x2,out)
	Raw pointwise multiplication of two vectors.

	_norm(x)
	Raw norm of a vector.

	astype(dtype)
	Return a copy of this space with new dtype.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	dist(x1,x2)
	Calculate the distance between two vectors.

	divide(x1,x2[,out])
	Calculate the pointwise division of x1 and x2

	element([inp])
	Create an element from inp or from scratch.

	inner(x1,x2)
	Calculate the inner product of x1 and x2.

	lincomb(a,x1[,b,x2,out])
	Linear combination of vectors.

	multiply(x1,x2[,out])
	Calculate the pointwise product of x1 and x2.

	norm(x)
	Calculate the norm of a vector.

	one()
	Create a vector of ones.

	zero()
	Create a vector of zeros.

	
__init__(uspace, dspace, restr=None, ext=None)

	Abstract initialization method.

Intended to be called by subclasses for proper type checking
and setting of attributes.

	Parameters:	uspace : LinearSpace

The (abstract) space to be discretized

dspace : FnBase

Data space providing containers for the values of a
discretized object. Its FnBase.field attribute
must be the same as uspace.field.

restr : Operator, linear, optional

Operator mapping a RawDiscretization.uspace element
to a RawDiscretization.dspace element. Must satisfy
restr.domain == uspace, restr.range == dspace

ext : Operator, linear, optional

Operator mapping a RawDiscretization.dspace element
to a RawDiscretization.uspace element. Must satisfy
ext.domain == dspace, ext.range == uspace.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.domain

	
Discretization.domain

	The domain of the continuous space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.dspace

	
Discretization.dspace

	The data space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.dspace_type

	
Discretization.dspace_type

	Data space type of this discretization.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.dtype

	
Discretization.dtype

	The data type of each entry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.element_type

	
Discretization.element_type

	DiscretizationVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.extension

	
Discretization.extension

	The operator mapping an n-tuple to a uspace element.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.field

	
Discretization.field

	The field of this vector space.

The field is the set of scalars of the space, that is numbers that
the vectors in the space can be multiplied with.

	Returns:	field : Field

The underlying field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.is_cn

	
Discretization.is_cn

	Return True if the space represents C^n, i.e. complex tuples.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.is_rn

	
Discretization.is_rn

	Return True if the space represents R^n, i.e. real tuples.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.is_weighted

	
Discretization.is_weighted

	Return True if the dspace is weighted.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.restriction

	
Discretization.restriction

	The operator mapping a uspace element to an n-tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.shape

	
Discretization.shape

	The shape of this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.size

	
Discretization.size

	The number of entries per tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.uspace

	
Discretization.uspace

	The undiscretized space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.weighting

	
Discretization.weighting

	This space’s weighting scheme.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.__contains__

	
Discretization.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is an NtuplesBaseVector instance and
other.space is equal to this space, False otherwise.

Examples

>>> from odl import Ntuples
>>> long_3 = Ntuples(3, dtype='int64')
>>> long_3.element() in long_3
True
>>> long_3.element() in Ntuples(3, dtype='int32')
False
>>> long_3.element() in Ntuples(3, dtype='float64')
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.__eq__

	
Discretization.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is a RawDiscretization
instance and all attributes uspace, dspace,
RawDiscretization.restriction and RawDiscretization.extension
of other and this discretization are equal, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization._dist

	
Discretization._dist(x1, x2)

	Raw distance between two vectors.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization._divide

	
Discretization._divide(x1, x2, out)

	Raw pointwise multiplication of two vectors.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization._inner

	
Discretization._inner(x1, x2)

	Raw inner product of two vectors.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization._lincomb

	
Discretization._lincomb(a, x1, b, x2, out)

	Raw linear combination.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization._multiply

	
Discretization._multiply(x1, x2, out)

	Raw pointwise multiplication of two vectors.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization._norm

	
Discretization._norm(x)

	Raw norm of a vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.astype

	
Discretization.astype(dtype)

	Return a copy of this space with new dtype.

	Parameters:	dtype :

Data type of the returned space. Can be given in any way
numpy.dtype understands, e.g. as string (‘complex64’)
or data type (complex).

	Returns:	newspace : FnBase

The version of this space with given data type

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.contains_all

	
Discretization.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.contains_set

	
Discretization.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.dist

	
Discretization.dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : LinearSpaceVector

Vectors whose distance to compute

	Returns:	dist : float

Distance between vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.divide

	
Discretization.divide(x1, x2, out=None)

	Calculate the pointwise division of x1 and x2

	Parameters:	x1 : LinearSpaceVector

The dividend

x2 : LinearSpaceVector

The divisor

out : LinearSpaceVector, optional

Vector to write the ratio to

	Returns:	out : LinearSpaceVector

Ratio of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.element

	
Discretization.element(inp=None)

	Create an element from inp or from scratch.

	Parameters:	inp : object, optional

The input data to create an element from. Must be
recognizable by the LinearSpace.element
method of either dspace or uspace.

	Returns:	element : RawDiscretizationVector

The discretized element, calculated as
dspace.element(inp) or
restriction(uspace.element(inp)), tried in this order.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.inner

	
Discretization.inner(x1, x2)

	Calculate the inner product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Factors in the inner product

	Returns:	out : LinearSpace.field element

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.lincomb

	
Discretization.lincomb(a, x1, b=None, x2=None, out=None)

	Linear combination of vectors.

Calculates

out = a * x1

or, if b and y are given,

out = a*x1 + b*x2

with error checking of types.

	Parameters:	a : Scalar in the field of this space

Scalar to multiply x1 with.

x1 : LinearSpaceVector

The first of the summands

b : Scalar, optional

Scalar to multiply x2 with.

x2 : LinearSpaceVector, optional

The second of the summands

out : LinearSpaceVector, optional

The Vector that the result should be written to.

	Returns:	out : LinearSpaceVector

Result of the linear combination. If out was provided,
the returned object is a reference to it.

Notes

The vectors out, x1 and x2 may be aligned, thus a call

space.lincomb(x, 2, x, 3.14, out=x)

is (mathematically) equivalent to

x = x * (1 + 2 + 3.14)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.multiply

	
Discretization.multiply(x1, x2, out=None)

	Calculate the pointwise product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Multiplicands in the product

out : LinearSpaceVector, optional

Vector to write the product to

	Returns:	out : LinearSpaceVector

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.norm

	
Discretization.norm(x)

	Calculate the norm of a vector.

	Parameters:	x : LinearSpaceVector

The vector

	Returns:	out : float

Norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.one

	
Discretization.one()

	Create a vector of ones.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	Discretization

Discretization.zero

	
Discretization.zero()

	Create a vector of zeros.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

DiscretizationVector

	
class odl.discr.discretization.DiscretizationVector(space, data)

	Bases: odl.discr.discretization.RawDiscretizationVector, odl.space.base_ntuples.FnBaseVector

Representation of a Discretization element.

Attributes

	T
	The transpose of a vector, the functional given by (.

	dtype
	type of data storage.

	extension
	The extension operator associated with this vector.

	itemsize
	The size in bytes on one element of this type.

	nbytes
	The number of bytes this vector uses in memory.

	ndim
	Number of dimensions, always 1.

	ntuple
	Structure for data storage.

	shape
	Number of entries per axis, equals (size,) for linear storage.

	size
	size of data storage.

	space
	Space to which this vector.

	ufunc
	NtuplesBaseUFuncs, access to numpy style ufuncs.

Methods

	__eq__(other)
	Return vec == other.

	__getitem__(indices)
	Return self[indices].

	__setitem__(indices,values)
	Implement self[indices] = values.

	asarray([out])
	Extract the data of this array as a numpy array.

	assign(other)
	Assign the values of other to self.

	copy()
	Create an identical (deep) copy of this vector.

	dist(other)
	Distance to other.

	divide(x,y)
	Divide by other inplace.

	inner(other)
	Inner product with other.

	lincomb(a,x1[,b,x2])
	Assign a linear combination to this vector.

	multiply(x,y)
	Multiply by other inplace.

	norm()
	Norm of vector

	restriction(ufunc)
	Restrict a continuous function and assign to this vector

	set_zero()
	Set this vector to zero.

	show([title,method,show,fig])
	Display the function graphically.

	
__init__(space, data)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.T

	
DiscretizationVector.T

	The transpose of a vector, the functional given by (. , self)

	Returns:	transpose : InnerProductOperator

Notes

This function is only defined in inner product spaces.

In a complex space, this takes the conjugate transpose of
the vector.

Examples

>>> from odl import Rn
>>> import numpy as np
>>> rn = Rn(3)
>>> x = rn.element([1, 2, 3])
>>> y = rn.element([2, 1, 3])
>>> x.T(y)
13.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.dtype

	
DiscretizationVector.dtype

	type of data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.extension

	
DiscretizationVector.extension

	The extension operator associated with this vector.

	Returns:	extension_op : FunctionSetMapping

Operatior representing a continuous extension of this vector.

See also

	RawDiscretization.extension

	For full description

Examples

>>> import odl
>>> import numpy as np

Create continuous extension of 1d function with nearest neighbour

>>> X = odl.uniform_discr(0, 1, 3, nodes_on_bdry=True)
>>> x = X.element([0, 1, 0])
>>> x.extension(np.array([0.24, 0.26]))
array([0., 1.])

Create continuous extension of 1d function wiht linear interpolation

>>> X = odl.uniform_discr(0, 1, 3, nodes_on_bdry=True, interp='linear')
>>> x = X.element([0, 1, 0])
>>> x.extension(np.array([0.24, 0.26]))
array([0.48, 0.52])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.itemsize

	
DiscretizationVector.itemsize

	The size in bytes on one element of this type.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.nbytes

	
DiscretizationVector.nbytes

	The number of bytes this vector uses in memory.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.ndim

	
DiscretizationVector.ndim

	Number of dimensions, always 1.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.ntuple

	
DiscretizationVector.ntuple

	Structure for data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.shape

	
DiscretizationVector.shape

	Number of entries per axis, equals (size,) for linear storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.size

	
DiscretizationVector.size

	size of data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.space

	
DiscretizationVector.space

	Space to which this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.ufunc

	
DiscretizationVector.ufunc

	NtuplesBaseUFuncs, access to numpy style ufuncs.

These are always available, but may or may not be optimized for
the specific space in use.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.__eq__

	
DiscretizationVector.__eq__(other)

	Return vec == other.

	Returns:	equals : bool

True if all entries of other are equal to this
vector’s entries, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.__getitem__

	
DiscretizationVector.__getitem__(indices)

	Return self[indices].

	Parameters:	indices : int or slice

The position(s) that should be accessed

	Returns:	values : NtuplesBaseVector

The value(s) at the index (indices)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.__setitem__

	
DiscretizationVector.__setitem__(indices, values)

	Implement self[indices] = values.

	Parameters:	indices : int or slice

The position(s) that should be set

values : scalar, array-like or NtuplesBaseVector

The value(s) that are to be assigned.

If index is an int, value must be single value.

If index is a slice, value must be broadcastable
to the size of the slice (same size, shape (1,)
or single value).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.asarray

	
DiscretizationVector.asarray(out=None)

	Extract the data of this array as a numpy array.

	Parameters:	out : numpy.ndarray, optional

Array in which the result should be written in-place.
Has to be contiguous and of the correct dtype.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.assign

	
DiscretizationVector.assign(other)

	Assign the values of other to self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.copy

	
DiscretizationVector.copy()

	Create an identical (deep) copy of this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.dist

	
DiscretizationVector.dist(other)

	Distance to other.

LinearSpace.dist

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.divide

	
DiscretizationVector.divide(x, y)

	Divide by other inplace.

LinearSpace.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.inner

	
DiscretizationVector.inner(other)

	Inner product with other.

LinearSpace.inner

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.lincomb

	
DiscretizationVector.lincomb(a, x1, b=None, x2=None)

	Assign a linear combination to this vector.

Implemented as space.lincomb(a, x1, b, x2, out=self).

LinearSpace.lincomb

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.multiply

	
DiscretizationVector.multiply(x, y)

	Multiply by other inplace.

LinearSpace.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.norm

	
DiscretizationVector.norm()

	Norm of vector

LinearSpace.norm

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.restriction

	
DiscretizationVector.restriction(ufunc)

	Restrict a continuous function and assign to this vector

	Parameters:	ufunc : self.space.uspace element

The continuous function that should be restricted.

See also

	RawDiscretization.restriction

	For full description

Examples

>>> import odl
>>> import numpy as np

Create discretization

>>> X = odl.uniform_discr(0, 1, 5)
>>> x = X.element()

Assign x according to continuous vector

>>> x.restriction(lambda x: x)
>>> print(x) # Print values at gridpoints (which are centered)
[0.1, 0.3, 0.5, 0.7, 0.9]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.set_zero

	
DiscretizationVector.set_zero()

	Set this vector to zero.

LinearSpace.zero

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	DiscretizationVector

DiscretizationVector.show

	
DiscretizationVector.show(title=None, method='scatter', show=False, fig=None, **kwargs)

	Display the function graphically.

	Parameters:	title : str, optional

Set the title of the figure

method : str, optional

1d methods:

‘plot’ : graph plot

‘scatter’ : point plot

show : bool, optional

If the plot should be showed now or deferred until later.

fig : matplotlib.figure.Figure

The figure to show in. Expected to be of same “style”, as
the figure given by this function. The most common use case
is that fig is the return value from an earlier call to
this function.

kwargs : {‘figsize’, ‘saveto’, ...}

Extra keyword arguments passed on to display method
See the Matplotlib functions for documentation of extra
options.

	Returns:	fig : matplotlib.figure.Figure

The resulting figure. It is also shown to the user.

See also

	odl.util.graphics.show_discrete_data

	Underlying implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

RawDiscretization

	
class odl.discr.discretization.RawDiscretization(uspace, dspace, restr=None, ext=None)

	Bases: odl.space.base_ntuples.NtuplesBase

Abstract raw discretization class.

A discretization in ODL is a way to encode the transition from
an arbitrary set to a set of n-tuples explicitly representable
in a computer. The most common use case is the discretization of
an infinite-dimensional vector space of functions by means of
storing coefficients in a finite basis.

The minimal information required to create a discretization is
the set to be discretized (“undiscretized space”) and a backend
for storage and processing of the n-tuples (“data space” or
“discretized space”).

As additional information, two mappings can be provided.
The first one is an explicit way to map an (abstract) element from
the source set to an n-tuple. This mapping is called
restriction in ODL.
The second one encodes the converse way of mapping an n-tuple to
an element of the original set. This mapping is called
extension.

Attributes

	domain
	The domain of the continuous space.

	dspace
	The data space.

	dspace_type
	Data space type of this discretization.

	dtype
	The data type of each entry.

	element_type
	RawDiscretizationVector

	extension
	The operator mapping an n-tuple to a uspace element.

	restriction
	The operator mapping a uspace element to an n-tuple.

	shape
	The shape of this space.

	size
	The number of entries per tuple.

	uspace
	The undiscretized space.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	element([inp])
	Create an element from inp or from scratch.

	
__init__(uspace, dspace, restr=None, ext=None)

	Abstract initialization method.

Intended to be called by subclasses for proper type checking
and setting of attributes.

	Parameters:	uspace : Set

The undiscretized (abstract) set to be discretized

dspace : NtuplesBase

Data space providing containers for the values of a
discretized object

restr : Operator, optional

Operator mapping a uspace element to a dspace element.
Must satisfy restr.domain == uspace,
restr.range == dspace.

ext : Operator, optional

Operator mapping a dspace element to a uspace element.
Must satisfy ext.domain == dspace,
ext.range == uspace.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.domain

	
RawDiscretization.domain

	The domain of the continuous space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.dspace

	
RawDiscretization.dspace

	The data space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.dspace_type

	
RawDiscretization.dspace_type

	Data space type of this discretization.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.dtype

	
RawDiscretization.dtype

	The data type of each entry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.element_type

	
RawDiscretization.element_type

	RawDiscretizationVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.extension

	
RawDiscretization.extension

	The operator mapping an n-tuple to a uspace element.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.restriction

	
RawDiscretization.restriction

	The operator mapping a uspace element to an n-tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.shape

	
RawDiscretization.shape

	The shape of this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.size

	
RawDiscretization.size

	The number of entries per tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.uspace

	
RawDiscretization.uspace

	The undiscretized space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.__contains__

	
RawDiscretization.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is an NtuplesBaseVector instance and
other.space is equal to this space, False otherwise.

Examples

>>> from odl import Ntuples
>>> long_3 = Ntuples(3, dtype='int64')
>>> long_3.element() in long_3
True
>>> long_3.element() in Ntuples(3, dtype='int32')
False
>>> long_3.element() in Ntuples(3, dtype='float64')
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.__eq__

	
RawDiscretization.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is a RawDiscretization
instance and all attributes uspace, dspace,
RawDiscretization.restriction and RawDiscretization.extension
of other and this discretization are equal, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.contains_all

	
RawDiscretization.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.contains_set

	
RawDiscretization.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretization

RawDiscretization.element

	
RawDiscretization.element(inp=None)

	Create an element from inp or from scratch.

	Parameters:	inp : object, optional

The input data to create an element from. Must be
recognizable by the LinearSpace.element
method of either dspace or uspace.

	Returns:	element : RawDiscretizationVector

The discretized element, calculated as
dspace.element(inp) or
restriction(uspace.element(inp)), tried in this order.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

RawDiscretizationVector

	
class odl.discr.discretization.RawDiscretizationVector(space, ntuple)

	Bases: odl.space.base_ntuples.NtuplesBaseVector

Representation of a RawDiscretization element.

Basically only a wrapper class for dspace’s vector class.

Attributes

	dtype
	type of data storage.

	extension
	The extension operator associated with this vector.

	itemsize
	The size in bytes on one element of this type.

	nbytes
	The number of bytes this vector uses in memory.

	ndim
	Number of dimensions, always 1.

	ntuple
	Structure for data storage.

	shape
	Number of entries per axis, equals (size,) for linear storage.

	size
	size of data storage.

	space
	Space to which this vector.

	ufunc
	NtuplesBaseUFuncs, access to numpy style ufuncs.

Methods

	__eq__(other)
	Return vec == other.

	__getitem__(indices)
	Return self[indices].

	__setitem__(indices,values)
	Implement self[indices] = values.

	asarray([out])
	Extract the data of this array as a numpy array.

	copy()
	Create an identical (deep) copy of this vector.

	restriction(ufunc)
	Restrict a continuous function and assign to this vector

	show([title,method,show,fig])
	Display the function graphically.

	
__init__(space, ntuple)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.dtype

	
RawDiscretizationVector.dtype

	type of data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.extension

	
RawDiscretizationVector.extension

	The extension operator associated with this vector.

	Returns:	extension_op : FunctionSetMapping

Operatior representing a continuous extension of this vector.

See also

	RawDiscretization.extension

	For full description

Examples

>>> import odl
>>> import numpy as np

Create continuous extension of 1d function with nearest neighbour

>>> X = odl.uniform_discr(0, 1, 3, nodes_on_bdry=True)
>>> x = X.element([0, 1, 0])
>>> x.extension(np.array([0.24, 0.26]))
array([0., 1.])

Create continuous extension of 1d function wiht linear interpolation

>>> X = odl.uniform_discr(0, 1, 3, nodes_on_bdry=True, interp='linear')
>>> x = X.element([0, 1, 0])
>>> x.extension(np.array([0.24, 0.26]))
array([0.48, 0.52])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.itemsize

	
RawDiscretizationVector.itemsize

	The size in bytes on one element of this type.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.nbytes

	
RawDiscretizationVector.nbytes

	The number of bytes this vector uses in memory.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.ndim

	
RawDiscretizationVector.ndim

	Number of dimensions, always 1.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.ntuple

	
RawDiscretizationVector.ntuple

	Structure for data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.shape

	
RawDiscretizationVector.shape

	Number of entries per axis, equals (size,) for linear storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.size

	
RawDiscretizationVector.size

	size of data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.space

	
RawDiscretizationVector.space

	Space to which this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.ufunc

	
RawDiscretizationVector.ufunc

	NtuplesBaseUFuncs, access to numpy style ufuncs.

These are always available, but may or may not be optimized for
the specific space in use.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.__eq__

	
RawDiscretizationVector.__eq__(other)

	Return vec == other.

	Returns:	equals : bool

True if all entries of other are equal to this
vector’s entries, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.__getitem__

	
RawDiscretizationVector.__getitem__(indices)

	Return self[indices].

	Parameters:	indices : int or slice

The position(s) that should be accessed

	Returns:	values : NtuplesBaseVector

The value(s) at the index (indices)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.__setitem__

	
RawDiscretizationVector.__setitem__(indices, values)

	Implement self[indices] = values.

	Parameters:	indices : int or slice

The position(s) that should be set

values : scalar, array-like or NtuplesBaseVector

The value(s) that are to be assigned.

If index is an int, value must be single value.

If index is a slice, value must be broadcastable
to the size of the slice (same size, shape (1,)
or single value).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.asarray

	
RawDiscretizationVector.asarray(out=None)

	Extract the data of this array as a numpy array.

	Parameters:	out : numpy.ndarray, optional

Array in which the result should be written in-place.
Has to be contiguous and of the correct dtype.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.copy

	
RawDiscretizationVector.copy()

	Create an identical (deep) copy of this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.restriction

	
RawDiscretizationVector.restriction(ufunc)

	Restrict a continuous function and assign to this vector

	Parameters:	ufunc : self.space.uspace element

The continuous function that should be restricted.

See also

	RawDiscretization.restriction

	For full description

Examples

>>> import odl
>>> import numpy as np

Create discretization

>>> X = odl.uniform_discr(0, 1, 5)
>>> x = X.element()

Assign x according to continuous vector

>>> x.restriction(lambda x: x)
>>> print(x) # Print values at gridpoints (which are centered)
[0.1, 0.3, 0.5, 0.7, 0.9]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

 	RawDiscretizationVector

RawDiscretizationVector.show

	
RawDiscretizationVector.show(title=None, method='scatter', show=False, fig=None, **kwargs)

	Display the function graphically.

	Parameters:	title : str, optional

Set the title of the figure

method : str, optional

1d methods:

‘plot’ : graph plot

‘scatter’ : point plot

show : bool, optional

If the plot should be showed now or deferred until later.

fig : matplotlib.figure.Figure

The figure to show in. Expected to be of same “style”, as
the figure given by this function. The most common use case
is that fig is the return value from an earlier call to
this function.

kwargs : {‘figsize’, ‘saveto’, ...}

Extra keyword arguments passed on to display method
See the Matplotlib functions for documentation of extra
options.

	Returns:	fig : matplotlib.figure.Figure

The resulting figure. It is also shown to the user.

See also

	odl.util.graphics.show_discrete_data

	Underlying implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	discretization

dspace_type

	
odl.discr.discretization.dspace_type(space, impl, dtype=None)

	Select the correct corresponding n-tuples space.

	Parameters:	space :

Template space from which to infer an adequate data space. If
it has a LinearSpace.field attribute, dtype must be
consistent with it.

impl : {‘numpy’, ‘cuda’}

Implementation backend for the data space

dtype : type, optional

Data type which the space is supposed to use. If None, the
space type is purely determined from space and
impl. If given, it must be compatible with the
field of space.

	Returns:	stype : type

Space type selected after the space’s field, the backend and
the data type

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

grid

Sparse implementations of n-dimensional sampling grids.

Sampling grids are collections of points in an n-dimensional coordinate
space with a certain structure which is exploited to minimize storage.

Classes

	RegularGrid(min_pt,max_pt,shape)
	An n-dimensional tensor grid with equidistant coordinates.

	TensorGrid(*coord_vectors)
	An n-dimensional tensor grid.

Functions

	sparse_meshgrid(*x)
	Make a sparse meshgrid by adding empty dimensions.

	uniform_sampling(begin,end,num_nodes)
	Sample an implicitly defined interval product uniformly.

	uniform_sampling_fromintv(intv_prod,num_nodes)
	Sample an interval product uniformly.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

RegularGrid

	
class odl.discr.grid.RegularGrid(min_pt, max_pt, shape)

	Bases: odl.discr.grid.TensorGrid

An n-dimensional tensor grid with equidistant coordinates.

This is a sparse representation of an n-dimensional grid defined
as the tensor product of n coordinate vectors with equidistant
nodes. The grid points are calculated according to the rule:

x_j = min_pt + j * (max_pt - min_pt) / (shape - 1)

with elementwise addition and multiplication.

Attributes

	center
	The center of the grid.

	coord_vectors
	The coordinate vectors of the grid.

	max_pt
	Vector containing the maximal grid coordinates per axis.

	meshgrid
	A grid suitable for function evaluation.

	min_pt
	Vector containing the minimal grid coordinates per axis.

	ndim
	The number of dimensions of the grid.

	shape
	The number of grid points per axis.

	size
	The total number of grid points.

	stride
	The step per axis between two neighboring grid points.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	__getitem__(slc)
	self[slc] implementation.

	append(other)
	Insert grid other at the end.

	approx_contains(other,atol)
	Test if other belongs to this grid up to a tolerance.

	approx_equals(other,atol)
	Test if this grid is equal to another grid.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	convex_hull()
	Return the smallest IntervalProd containing this grid.

	corner_grid()
	Return a grid with only the corner points.

	corners([order])
	The corner points of the grid in a single array.

	element()
	An arbitrary element, the minimum coordinates.

	extent()
	Return the edge lengths of this grid’s minimal bounding box.

	insert(index,other)
	Insert another regular grid before the given index.

	is_subgrid(other[,atol])
	Test if this grid is contained in another grid.

	max(**kwargs)
	Return max_pt.

	min(**kwargs)
	Return min_pt.

	points([order])
	All grid points in a single array.

	squeeze()
	Return the grid with removed degenerate dimensions.

	
__init__(min_pt, max_pt, shape)

	Initialize a new instance.

	Parameters:	min_pt : array-like or float

Grid point with minimum coordinates, can be a single float
for 1D grids

max_pt : array-like or float

Grid point with maximum coordinates, can be a single float
for 1D grids

shape : array-like or int

The number of grid points per axis, can be an integer for
1D grids

Examples

>>> rg = RegularGrid([-1.5, -1], [-0.5, 3], (2, 3))
>>> rg
RegularGrid([-1.5, -1.0], [-0.5, 3.0], (2, 3))
>>> rg.coord_vectors
(array([-1.5, -0.5]), array([-1., 1., 3.]))
>>> rg.ndim, rg.size
(2, 6)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.center

	
RegularGrid.center

	The center of the grid. Not necessarily a grid point.

Examples

>>> rg = RegularGrid([-1.5, -1], [-0.5, 3], (2, 3))
>>> rg.center
array([-1., 1.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.coord_vectors

	
RegularGrid.coord_vectors

	The coordinate vectors of the grid.

	Returns:	coord_vectors : tuple of numpy.ndarray‘s

See also

	meshgrid

	Same result but with nd arrays

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> x, y = g.coord_vectors
>>> x
array([0., 1.])
>>> y
array([-1., 0., 2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.max_pt

	
RegularGrid.max_pt

	Vector containing the maximal grid coordinates per axis.

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g.max_pt
array([5., 2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.meshgrid

	
RegularGrid.meshgrid

	A grid suitable for function evaluation.

	Returns:	meshgrid : tuple of numpy.ndarray

Function evaluation grid with ndim axes

See also

	numpy.meshgrid

	Coordinate matrices from coordinate vectors. We use indexing='ij' and copy=True

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> x, y = g.meshgrid
>>> x
array([[0.],
 [1.]])
>>> y
array([[-1., 0., 2.]])

Easy function evaluation via broadcasting:

>>> x**2 - y**2
array([[-1., 0., -4.],
 [0., 1., -3.]])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.min_pt

	
RegularGrid.min_pt

	Vector containing the minimal grid coordinates per axis.

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g.min_pt
array([1., -2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.ndim

	
RegularGrid.ndim

	The number of dimensions of the grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.shape

	
RegularGrid.shape

	The number of grid points per axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.size

	
RegularGrid.size

	The total number of grid points.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.stride

	
RegularGrid.stride

	The step per axis between two neighboring grid points.

Examples

>>> rg = RegularGrid([-1.5, -1], [-0.5, 3], (2, 3))
>>> rg.stride
array([1., 2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.__contains__

	
RegularGrid.__contains__(other)

	Return other in self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.__eq__

	
RegularGrid.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.__getitem__

	
RegularGrid.__getitem__(slc)

	self[slc] implementation.

	Parameters:	slc : int or slice

Negative indices and None (new axis) are not supported.

Examples

>>> g = RegularGrid([-1.5, -3, -1], [-0.5, 7, 4], (2, 3, 6))
>>> g[0, 0, 0]
array([-1.5, -3. , -1.])
>>> g[:, 0, 0]
RegularGrid([-1.5, -3.0, -1.0], [-0.5, -3.0, -1.0], (2, 1, 1))

Ellipsis can be used, too:

>>> g[..., ::3]
RegularGrid([-1.5, -3.0, -1.0], [-0.5, 7.0, 2.0], (2, 3, 2))

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.append

	
RegularGrid.append(other)

	Insert grid other at the end.

	Parameters:	other : IntervalProd, float or array-like

The set to be inserted. A float or array a is
treated as an IntervalProd(a, a).

See also

insert

Examples

>>> g1 = TensorGrid([0, 1], [-1, 2])
>>> g2 = TensorGrid([1], [-6, 15])
>>> g1.append(g2)
TensorGrid([0.0, 1.0], [-1.0, 2.0], [1.0], [-6.0, 15.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.approx_contains

	
RegularGrid.approx_contains(other, atol)

	Test if other belongs to this grid up to a tolerance.

	Parameters:	other : array-like or float

The object to test for membership in this grid

atol : float

Allow deviations up to this number in absolute value
per vector entry.

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> g.approx_contains([0, 0], atol=0.0)
True
>>> [0, 0] in g # equivalent
True
>>> g.approx_contains([0.1, -0.1], atol=0.0)
False
>>> g.approx_contains([0.1, -0.1], atol=0.15)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.approx_equals

	
RegularGrid.approx_equals(other, atol)

	Test if this grid is equal to another grid.

	Parameters:	other : object

Object to be tested

atol : float

Allow deviations up to this number in absolute value
per vector entry.

	Returns:	equals : bool

True if other is a TensorGrid instance with all
coordinate vectors equal (up to the given tolerance), to
the ones of this grid, otherwise False.

Examples

>>> g1 = TensorGrid([0, 1], [-1, 0, 2])
>>> g2 = TensorGrid([-0.1, 1.1], [-1, 0.1, 2])
>>> g1.approx_equals(g2, atol=0)
False
>>> g1.approx_equals(g2, atol=0.15)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.contains_all

	
RegularGrid.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.contains_set

	
RegularGrid.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.convex_hull

	
RegularGrid.convex_hull()

	Return the smallest IntervalProd containing this grid.

The convex hull of a set is the union of all line segments
between points in the set. For a tensor grid, it is the
interval product given by the extremal coordinates.

	Returns:	chull : IntervalProd

Interval product defined by the minimum and maximum of
the grid

Examples

>>> g = TensorGrid([-1, 0, 3], [2, 4], [5], [2, 4, 7])
>>> g.convex_hull()
IntervalProd([-1.0, 2.0, 5.0, 2.0], [3.0, 4.0, 5.0, 7.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.corner_grid

	
RegularGrid.corner_grid()

	Return a grid with only the corner points.

	Returns:	cgrid : TensorGrid

Grid with size 2 in non-degenerate dimensions and 1
in degenerate ones

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> g.corner_grid()
TensorGrid([0.0, 1.0], [-1.0, 2.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.corners

	
RegularGrid.corners(order='C')

	The corner points of the grid in a single array.

	Parameters:	order : {‘C’, ‘F’}

Axis ordering in the resulting point array

	Returns:	corners : numpy.ndarray

The size of the array is 2^m x ndim, where m is the number
of non-degenerate axes, i.e. the corners are stored as rows.

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> g.corners()
array([[0., -1.],
 [0., 2.],
 [1., -1.],
 [1., 2.]])
>>> g.corners(order='F')
array([[0., -1.],
 [1., -1.],
 [0., 2.],
 [1., 2.]])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.element

	
RegularGrid.element()

	An arbitrary element, the minimum coordinates.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.extent

	
RegularGrid.extent()

	Return the edge lengths of this grid’s minimal bounding box.

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g.extent()
array([4., 4.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.insert

	
RegularGrid.insert(index, other)

	Insert another regular grid before the given index.

The given grid (m dimensions) is inserted into the current
one (n dimensions) before the given index, resulting in a new
RegularGrid with n + m dimensions.
Note that no changes are made in-place.

	Parameters:	index : int

Index of the dimension before which other is to
be inserted. Negative indices count backwards from
self.ndim.

other : TensorGrid

Grid to be inserted. If a RegularGrid is given,
the output will be a RegularGrid.

	Returns:	newgrid : TensorGrid or RegularGrid

The enlarged grid. If the inserted grid is a RegularGrid,
so is the return value.

Examples

>>> rg1 = RegularGrid([-1.5, -1], [-0.5, 3], (2, 3))
>>> rg2 = RegularGrid(-3, 7, 6)
>>> rg1.insert(1, rg2)
RegularGrid([-1.5, -3.0, -1.0], [-0.5, 7.0, 3.0], (2, 6, 3))

If other is a TensorGrid, so is the result:

>>> tg = TensorGrid([0, 1, 2])
>>> rg1.insert(2, tg)
TensorGrid([-1.5, -0.5], [-1.0, 1.0, 3.0], [0.0, 1.0, 2.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.is_subgrid

	
RegularGrid.is_subgrid(other, atol=0.0)

	Test if this grid is contained in another grid.

	Parameters:	other :

Check if this object is a subgrid

atol : float

Allow deviations up to this number in absolute value
per coordinate vector entry.

Examples

>>> rg = RegularGrid([-2, -2], [0, 4], (3, 4))
>>> rg.coord_vectors
(array([-2., -1., 0.]), array([-2., 0., 2., 4.]))
>>> rg_sub = RegularGrid([-1, 2], [0, 4], (2, 2))
>>> rg_sub.coord_vectors
(array([-1., 0.]), array([2., 4.]))
>>> rg_sub.is_subgrid(rg)
True

Fuzzy check is also possible. Note that the tolerance still
applies to the coordinate vectors.

>>> rg_sub = RegularGrid([-1.015, 2], [0, 3.99], (2, 2))
>>> rg_sub.is_subgrid(rg, atol=0.01)
False
>>> rg_sub.is_subgrid(rg, atol=0.02)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.max

	
RegularGrid.max(**kwargs)

	Return max_pt.

	Parameters:	kwargs

For duck-typing with numpy.amax

See also

min, odl.set.domain.IntervalProd.max

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g.max()
array([5., 2.])

Also works with numpy

>>> import numpy
>>> numpy.max(g)
array([5., 2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.min

	
RegularGrid.min(**kwargs)

	Return min_pt.

	Parameters:	kwargs

For duck-typing with numpy.amin

See also

max, odl.set.domain.IntervalProd.min

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g.min()
array([1., -2.])

Also works with numpy

>>> import numpy
>>> numpy.min(g)
array([1., -2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.points

	
RegularGrid.points(order='C')

	All grid points in a single array.

	Parameters:	order : {‘C’, ‘F’}

Axis ordering in the resulting point array

	Returns:	points : numpy.ndarray

The shape of the array is size x ndim, i.e. the points
are stored as rows.

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> g.points()
array([[0., -1.],
 [0., 0.],
 [0., 2.],
 [1., -1.],
 [1., 0.],
 [1., 2.]])
>>> g.points(order='F')
array([[0., -1.],
 [1., -1.],
 [0., 0.],
 [1., 0.],
 [0., 2.],
 [1., 2.]])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	RegularGrid

RegularGrid.squeeze

	
RegularGrid.squeeze()

	Return the grid with removed degenerate dimensions.

	Returns:	squeezed : RegularGrid

The squeezed grid

Examples

>>> g = RegularGrid([0, 0, 0], [1, 0, 1], (5, 1, 5))
>>> g.squeeze()
RegularGrid([0.0, 0.0], [1.0, 1.0], (5, 5))

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

TensorGrid

	
class odl.discr.grid.TensorGrid(*coord_vectors)

	Bases: odl.set.sets.Set

An n-dimensional tensor grid.

A tensor grid is the set of points defined by all possible
combination of coordinates taken from fixed coordinate vectors.

In 2 dimensions, for example, given two coordinate vectors:

coord_vec1 = [0, 1]
coord_vec2 = [-1, 0, 2]

the corresponding tensor grid is the set of all 2d points whose
first component is from coord_vec1 and the second component from
coord_vec2. The total number of such points is 2 * 3 = 6:

points = [[0, -1], [0, 0], [0, 2],
 [1, -1], [1, 0], [1, 2]]

Note that this is the standard ‘C’ ordering where the first axis
(coord_vec1) varies slowest. Ordering is only relevant when
the point array is actually created; the grid itself is independent
of this ordering.

The storage need for a tensor grid is only the sum of the lengths
of the coordinate vectors, while the total number of points is
the product of these lengths. This class makes use of this
sparse storage.

Attributes

	coord_vectors
	The coordinate vectors of the grid.

	max_pt
	Vector containing the maximal grid coordinates per axis.

	meshgrid
	A grid suitable for function evaluation.

	min_pt
	Vector containing the minimal grid coordinates per axis.

	ndim
	The number of dimensions of the grid.

	shape
	The number of grid points per axis.

	size
	The total number of grid points.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	__getitem__(slc)
	Return self[slc].

	append(other)
	Insert grid other at the end.

	approx_contains(other,atol)
	Test if other belongs to this grid up to a tolerance.

	approx_equals(other,atol)
	Test if this grid is equal to another grid.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	convex_hull()
	Return the smallest IntervalProd containing this grid.

	corner_grid()
	Return a grid with only the corner points.

	corners([order])
	The corner points of the grid in a single array.

	element()
	An arbitrary element, the minimum coordinates.

	extent()
	Return the edge lengths of this grid’s minimal bounding box.

	insert(index,other)
	Return a copy with other inserted before index.

	is_subgrid(other[,atol])
	Test if this grid is contained in another grid.

	max(**kwargs)
	Return max_pt.

	min(**kwargs)
	Return min_pt.

	points([order])
	All grid points in a single array.

	squeeze()
	Return the grid with removed degenerate (length 1) dimensions.

	
__init__(*coord_vectors)

	Initialize a TensorGrid instance.

	Parameters:	vec1,...,vecN : array-like

The coordinate vectors defining the grid points. They must
be sorted in ascending order and may not contain
duplicates. Empty vectors are not allowed.

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g
TensorGrid([1.0, 2.0, 5.0], [-2.0, 1.5, 2.0])
>>> print(g)
grid [1.0, 2.0, 5.0] x [-2.0, 1.5, 2.0]
>>> g.ndim # number of axes
2
>>> g.shape # points per axis
(3, 3)
>>> g.size # total number of points
9

Grid points can be extracted with index notation (NOTE: This is
slow, do not loop over the grid using indices!):

>>> g = TensorGrid([-1, 0, 3], [2, 4], [5], [2, 4, 7])
>>> g[0, 0, 0, 0]
array([-1., 2., 5., 2.])

Slices and ellipsis are also supported:

>>> g[:, 0, 0, 0]
TensorGrid([-1.0, 0.0, 3.0], [2.0], [5.0], [2.0])
>>> g[0, ..., 1:]
TensorGrid([-1.0], [2.0, 4.0], [5.0], [4.0, 7.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.coord_vectors

	
TensorGrid.coord_vectors

	The coordinate vectors of the grid.

	Returns:	coord_vectors : tuple of numpy.ndarray‘s

See also

	meshgrid

	Same result but with nd arrays

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> x, y = g.coord_vectors
>>> x
array([0., 1.])
>>> y
array([-1., 0., 2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.max_pt

	
TensorGrid.max_pt

	Vector containing the maximal grid coordinates per axis.

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g.max_pt
array([5., 2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.meshgrid

	
TensorGrid.meshgrid

	A grid suitable for function evaluation.

	Returns:	meshgrid : tuple of numpy.ndarray

Function evaluation grid with ndim axes

See also

	numpy.meshgrid

	Coordinate matrices from coordinate vectors. We use indexing='ij' and copy=True

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> x, y = g.meshgrid
>>> x
array([[0.],
 [1.]])
>>> y
array([[-1., 0., 2.]])

Easy function evaluation via broadcasting:

>>> x**2 - y**2
array([[-1., 0., -4.],
 [0., 1., -3.]])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.min_pt

	
TensorGrid.min_pt

	Vector containing the minimal grid coordinates per axis.

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g.min_pt
array([1., -2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.ndim

	
TensorGrid.ndim

	The number of dimensions of the grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.shape

	
TensorGrid.shape

	The number of grid points per axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.size

	
TensorGrid.size

	The total number of grid points.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.__contains__

	
TensorGrid.__contains__(other)

	Return other in self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.__eq__

	
TensorGrid.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.__getitem__

	
TensorGrid.__getitem__(slc)

	Return self[slc].

	Parameters:	slc : int or slice

Negative indices and None (new axis) are not supported.

Examples

>>> g = TensorGrid([-1, 0, 3], [2, 4], [5], [2, 4, 7])
>>> g[0, 0, 0, 0]
array([-1., 2., 5., 2.])
>>> g[:, 0, 0, 0]
TensorGrid([-1.0, 0.0, 3.0], [2.0], [5.0], [2.0])
>>> g[0, ..., 1:]
TensorGrid([-1.0], [2.0, 4.0], [5.0], [4.0, 7.0])
>>> g[::2, ..., ::2]
TensorGrid([-1.0, 3.0], [2.0, 4.0], [5.0], [2.0, 7.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.append

	
TensorGrid.append(other)

	Insert grid other at the end.

	Parameters:	other : IntervalProd, float or array-like

The set to be inserted. A float or array a is
treated as an IntervalProd(a, a).

See also

insert

Examples

>>> g1 = TensorGrid([0, 1], [-1, 2])
>>> g2 = TensorGrid([1], [-6, 15])
>>> g1.append(g2)
TensorGrid([0.0, 1.0], [-1.0, 2.0], [1.0], [-6.0, 15.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.approx_contains

	
TensorGrid.approx_contains(other, atol)

	Test if other belongs to this grid up to a tolerance.

	Parameters:	other : array-like or float

The object to test for membership in this grid

atol : float

Allow deviations up to this number in absolute value
per vector entry.

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> g.approx_contains([0, 0], atol=0.0)
True
>>> [0, 0] in g # equivalent
True
>>> g.approx_contains([0.1, -0.1], atol=0.0)
False
>>> g.approx_contains([0.1, -0.1], atol=0.15)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.approx_equals

	
TensorGrid.approx_equals(other, atol)

	Test if this grid is equal to another grid.

	Parameters:	other : object

Object to be tested

atol : float

Allow deviations up to this number in absolute value
per vector entry.

	Returns:	equals : bool

True if other is a TensorGrid instance with all
coordinate vectors equal (up to the given tolerance), to
the ones of this grid, otherwise False.

Examples

>>> g1 = TensorGrid([0, 1], [-1, 0, 2])
>>> g2 = TensorGrid([-0.1, 1.1], [-1, 0.1, 2])
>>> g1.approx_equals(g2, atol=0)
False
>>> g1.approx_equals(g2, atol=0.15)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.contains_all

	
TensorGrid.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.contains_set

	
TensorGrid.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.convex_hull

	
TensorGrid.convex_hull()

	Return the smallest IntervalProd containing this grid.

The convex hull of a set is the union of all line segments
between points in the set. For a tensor grid, it is the
interval product given by the extremal coordinates.

	Returns:	chull : IntervalProd

Interval product defined by the minimum and maximum of
the grid

Examples

>>> g = TensorGrid([-1, 0, 3], [2, 4], [5], [2, 4, 7])
>>> g.convex_hull()
IntervalProd([-1.0, 2.0, 5.0, 2.0], [3.0, 4.0, 5.0, 7.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.corner_grid

	
TensorGrid.corner_grid()

	Return a grid with only the corner points.

	Returns:	cgrid : TensorGrid

Grid with size 2 in non-degenerate dimensions and 1
in degenerate ones

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> g.corner_grid()
TensorGrid([0.0, 1.0], [-1.0, 2.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.corners

	
TensorGrid.corners(order='C')

	The corner points of the grid in a single array.

	Parameters:	order : {‘C’, ‘F’}

Axis ordering in the resulting point array

	Returns:	corners : numpy.ndarray

The size of the array is 2^m x ndim, where m is the number
of non-degenerate axes, i.e. the corners are stored as rows.

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> g.corners()
array([[0., -1.],
 [0., 2.],
 [1., -1.],
 [1., 2.]])
>>> g.corners(order='F')
array([[0., -1.],
 [1., -1.],
 [0., 2.],
 [1., 2.]])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.element

	
TensorGrid.element()

	An arbitrary element, the minimum coordinates.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.extent

	
TensorGrid.extent()

	Return the edge lengths of this grid’s minimal bounding box.

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g.extent()
array([4., 4.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.insert

	
TensorGrid.insert(index, other)

	Return a copy with other inserted before index.

The given grid (m dimensions) is inserted into the current
one (n dimensions) before the given index, resulting in a new
TensorGrid with n + m dimensions.
Note that no changes are made in-place.

	Parameters:	index : int

The index of the dimension before which other is to
be inserted. Negative indices count backwards from
self.ndim.

other : TensorGrid, float or array-like

The grid to be inserted

	Returns:	newgrid : TensorGrid

The enlarged grid

See also

append

Examples

>>> g1 = TensorGrid([0, 1], [-1, 2])
>>> g2 = TensorGrid([1], [-6, 15])
>>> g1.insert(1, g2)
TensorGrid([0.0, 1.0], [1.0], [-6.0, 15.0], [-1.0, 2.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.is_subgrid

	
TensorGrid.is_subgrid(other, atol=0.0)

	Test if this grid is contained in another grid.

	Parameters:	other : TensorGrid

The other grid which is supposed to contain this grid

atol : float

Allow deviations up to this number in absolute value
per coordinate vector entry.

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> g_sub = TensorGrid([0], [-1, 2])
>>> g_sub.is_subgrid(g)
True
>>> g_sub = TensorGrid([0.1], [-1.05, 2.1])
>>> g_sub.is_subgrid(g)
False
>>> g_sub.is_subgrid(g, atol=0.15)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.max

	
TensorGrid.max(**kwargs)

	Return max_pt.

	Parameters:	kwargs

For duck-typing with numpy.amax

See also

min, odl.set.domain.IntervalProd.max

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g.max()
array([5., 2.])

Also works with numpy

>>> import numpy
>>> numpy.max(g)
array([5., 2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.min

	
TensorGrid.min(**kwargs)

	Return min_pt.

	Parameters:	kwargs

For duck-typing with numpy.amin

See also

max, odl.set.domain.IntervalProd.min

Examples

>>> g = TensorGrid([1, 2, 5], [-2, 1.5, 2])
>>> g.min()
array([1., -2.])

Also works with numpy

>>> import numpy
>>> numpy.min(g)
array([1., -2.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.points

	
TensorGrid.points(order='C')

	All grid points in a single array.

	Parameters:	order : {‘C’, ‘F’}

Axis ordering in the resulting point array

	Returns:	points : numpy.ndarray

The shape of the array is size x ndim, i.e. the points
are stored as rows.

Examples

>>> g = TensorGrid([0, 1], [-1, 0, 2])
>>> g.points()
array([[0., -1.],
 [0., 0.],
 [0., 2.],
 [1., -1.],
 [1., 0.],
 [1., 2.]])
>>> g.points(order='F')
array([[0., -1.],
 [1., -1.],
 [0., 0.],
 [1., 0.],
 [0., 2.],
 [1., 2.]])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

 	TensorGrid

TensorGrid.squeeze

	
TensorGrid.squeeze()

	Return the grid with removed degenerate (length 1) dimensions.

	Returns:	squeezed : TensorGrid

The squeezed grid

Examples

>>> g = TensorGrid([0, 1], [-1], [-1, 0, 2])
>>> g.squeeze()
TensorGrid([0.0, 1.0], [-1.0, 0.0, 2.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

sparse_meshgrid

	
odl.discr.grid.sparse_meshgrid(*x)

	Make a sparse meshgrid by adding empty dimensions.

	Parameters:	x1,...,xN : array-like

Input arrays to turn into sparse meshgrid vectors

	Returns:	meshgrid : tuple of numpy.ndarray

Sparse coordinate vectors representing an N-dimensional grid

See also

	numpy.meshgrid

	dense or sparse meshgrids

Examples

>>> x, y = [0, 1], [2, 3, 4]
>>> mesh = sparse_meshgrid(x, y)
>>> sum(xi for xi in mesh).ravel() # first axis slowest
array([2, 3, 4, 3, 4, 5])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

uniform_sampling

	
odl.discr.grid.uniform_sampling(begin, end, num_nodes)

	Sample an implicitly defined interval product uniformly.

	Parameters:	begin : array-like or float

The lower ends of the intervals in the product

end : array-like or float

The upper ends of the intervals in the product

num_nodes : int or tuple of int

Number of nodes per axis. For dimension >= 2, a tuple
is required. All entries must be positive. Entries
corresponding to degenerate axes must be equal to 1.

See also

	uniform_sampling_fromintv

	sample a given interval product

	odl.discr.partition.uniform_partition

	divide implicitly defined interval product into equally sized subsets

Examples

>>> grid = uniform_sampling([-1.5, 2], [-0.5, 3], (3, 3))
>>> grid.coord_vectors
(array([-1.5, -1. , -0.5]), array([2. , 2.5, 3.]))

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	grid

uniform_sampling_fromintv

	
odl.discr.grid.uniform_sampling_fromintv(intv_prod, num_nodes)

	Sample an interval product uniformly.

The resulting grid will include begin and end of
intv_prod as grid points. If you want a subdivision into
equally sized cells with grid points in the middle, use
uniform_partition instead.

	Parameters:	intv_prod : IntervalProd

Set to be sampled

num_nodes : int or tuple of int

Number of nodes per axis. For dimension >= 2, a tuple
is required. All entries must be positive. Entries
corresponding to degenerate axes must be equal to 1.

	Returns:	sampling : RegularGrid

Uniform sampling grid for the interval product

See also

	uniform_sampling

	Sample an implicitly created IntervalProd

Examples

>>> from odl import IntervalProd
>>> rbox = IntervalProd([-1.5, 2], [-0.5, 3])
>>> grid = uniform_sampling_fromintv(rbox, (3, 3))
>>> grid.coord_vectors
(array([-1.5, -1. , -0.5]), array([2. , 2.5, 3.]))

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

lp_discr

[image: L^p] type discretizations of function spaces.

Classes

	DiscreteLp(fspace,partition,dspace[,...])
	Discretization of a Lebesgue [image: L^p] space.

	DiscreteLpVector(space,data)
	Representation of a DiscreteLp element.

Functions

	discr_sequence_space(shape[,exponent,impl])
	Return an object mimicing the sequence space l^p(R^d).

	uniform_discr(min_corner,max_corner,nsamples)
	Discretize an Lp function space by uniform sampling.

	uniform_discr_frompartition(partition[,...])
	Discretize an Lp function space given a uniform partition.

	uniform_discr_fromspace(fspace,nsamples[,...])
	Discretize an Lp function space by uniform partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

DiscreteLp

	
class odl.discr.lp_discr.DiscreteLp(fspace, partition, dspace, exponent=2.0, interp='nearest', **kwargs)

	Bases: odl.discr.discretization.Discretization

Discretization of a Lebesgue [image: L^p] space.

Attributes

	cell_sides
	Side lengths of a cell in an underlying uniform partition.

	cell_volume
	Cell volume of an underlying regular partition.

	domain
	The domain of the continuous space.

	dspace
	The data space.

	dspace_type
	Data space type of this discretization.

	dtype
	The data type of each entry.

	element_type
	DiscreteLpVector

	exponent
	The exponent p in L^p.

	extension
	The operator mapping an n-tuple to a uspace element.

	field
	The field of this vector space.

	grid
	Sampling grid of the discretization mappings.

	interp
	Interpolation type of this discretization.

	is_cn
	Return True if the space represents C^n, i.e.

	is_rn
	Return True if the space represents R^n, i.e.

	is_weighted
	Return True if the dspace is weighted.

	meshgrid
	All sampling points in the partition as a sparse meshgrid.

	ndim
	Number of dimensions.

	order
	Axis ordering for array flattening.

	partition
	The RectPartition of the domain.

	restriction
	The operator mapping a uspace element to an n-tuple.

	shape
	Shape of the underlying partition.

	size
	Total number of underlying partition cells.

	uspace
	The undiscretized space.

	weighting
	This space’s weighting scheme.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	_dist(x,y)
	Return self.dist(x, y).

	_divide(x1,x2,out)
	Raw pointwise multiplication of two vectors.

	_inner(x,y)
	Return self.inner(x, y).

	_lincomb(a,x1,b,x2,out)
	Raw linear combination.

	_multiply(x1,x2,out)
	Raw pointwise multiplication of two vectors.

	_norm(x)
	Return self.norm(x).

	astype(dtype)
	Return a copy of this space with new dtype.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	dist(x1,x2)
	Calculate the distance between two vectors.

	divide(x1,x2[,out])
	Calculate the pointwise division of x1 and x2

	element([inp])
	Create an element from inp or from scratch.

	inner(x1,x2)
	Calculate the inner product of x1 and x2.

	lincomb(a,x1[,b,x2,out])
	Linear combination of vectors.

	multiply(x1,x2[,out])
	Calculate the pointwise product of x1 and x2.

	norm(x)
	Calculate the norm of a vector.

	one()
	Create a vector of ones.

	points()
	All sampling points in the partition.

	zero()
	Create a vector of zeros.

	
__init__(fspace, partition, dspace, exponent=2.0, interp='nearest', **kwargs)

	Initialize a new instance.

	Parameters:	fspace : FunctionSpace

The continuous space to be discretized

partition : RectPartition

Partition of (a subset of) fspace.domain based on a
TensorGrid

dspace : FnBase

Space of elements used for data storage. It must have the
same FnBase.field as fspace

exponent : positive float, optional

The parameter [image: p] in [image: L^p]. If the exponent is
not equal to the default 2.0, the space has no inner
product.

interp : str or sequence of str, optional

The interpolation type to be used for discretization.
A sequence is interpreted as interpolation scheme per
axis.

‘nearest’ : use nearest-neighbor interpolation (default)

‘linear’ : use linear interpolation

order : {‘C’, ‘F’}, optional

Ordering of the axes in the data storage. ‘C’ means the
first axis varies slowest, the last axis fastest;
vice versa for ‘F’.
Default: ‘C’

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.cell_sides

	
DiscreteLp.cell_sides

	Side lengths of a cell in an underlying uniform partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.cell_volume

	
DiscreteLp.cell_volume

	Cell volume of an underlying regular partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.domain

	
DiscreteLp.domain

	The domain of the continuous space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.dspace

	
DiscreteLp.dspace

	The data space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.dspace_type

	
DiscreteLp.dspace_type

	Data space type of this discretization.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.dtype

	
DiscreteLp.dtype

	The data type of each entry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.element_type

	
DiscreteLp.element_type

	DiscreteLpVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.exponent

	
DiscreteLp.exponent

	The exponent p in L^p.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.extension

	
DiscreteLp.extension

	The operator mapping an n-tuple to a uspace element.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.field

	
DiscreteLp.field

	The field of this vector space.

The field is the set of scalars of the space, that is numbers that
the vectors in the space can be multiplied with.

	Returns:	field : Field

The underlying field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.grid

	
DiscreteLp.grid

	Sampling grid of the discretization mappings.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.interp

	
DiscreteLp.interp

	Interpolation type of this discretization.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.is_cn

	
DiscreteLp.is_cn

	Return True if the space represents C^n, i.e. complex tuples.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.is_rn

	
DiscreteLp.is_rn

	Return True if the space represents R^n, i.e. real tuples.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.is_weighted

	
DiscreteLp.is_weighted

	Return True if the dspace is weighted.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.meshgrid

	
DiscreteLp.meshgrid

	All sampling points in the partition as a sparse meshgrid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.ndim

	
DiscreteLp.ndim

	Number of dimensions.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.order

	
DiscreteLp.order

	Axis ordering for array flattening.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.partition

	
DiscreteLp.partition

	The RectPartition of the domain.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.restriction

	
DiscreteLp.restriction

	The operator mapping a uspace element to an n-tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.shape

	
DiscreteLp.shape

	Shape of the underlying partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.size

	
DiscreteLp.size

	Total number of underlying partition cells.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.uspace

	
DiscreteLp.uspace

	The undiscretized space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.weighting

	
DiscreteLp.weighting

	This space’s weighting scheme.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.__contains__

	
DiscreteLp.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is an NtuplesBaseVector instance and
other.space is equal to this space, False otherwise.

Examples

>>> from odl import Ntuples
>>> long_3 = Ntuples(3, dtype='int64')
>>> long_3.element() in long_3
True
>>> long_3.element() in Ntuples(3, dtype='int32')
False
>>> long_3.element() in Ntuples(3, dtype='float64')
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.__eq__

	
DiscreteLp.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is a RawDiscretization
instance and all attributes uspace, dspace,
RawDiscretization.restriction and RawDiscretization.extension
of other and this discretization are equal, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp._dist

	
DiscreteLp._dist(x, y)

	Return self.dist(x, y).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp._divide

	
DiscreteLp._divide(x1, x2, out)

	Raw pointwise multiplication of two vectors.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp._inner

	
DiscreteLp._inner(x, y)

	Return self.inner(x, y).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp._lincomb

	
DiscreteLp._lincomb(a, x1, b, x2, out)

	Raw linear combination.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp._multiply

	
DiscreteLp._multiply(x1, x2, out)

	Raw pointwise multiplication of two vectors.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp._norm

	
DiscreteLp._norm(x)

	Return self.norm(x).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.astype

	
DiscreteLp.astype(dtype)

	Return a copy of this space with new dtype.

	Parameters:	dtype :

Data type of the returned space. Can be given in any way
numpy.dtype understands, e.g. as string (‘complex64’)
or data type (complex).

	Returns:	newspace : FnBase

The version of this space with given data type

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.contains_all

	
DiscreteLp.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.contains_set

	
DiscreteLp.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.dist

	
DiscreteLp.dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : LinearSpaceVector

Vectors whose distance to compute

	Returns:	dist : float

Distance between vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.divide

	
DiscreteLp.divide(x1, x2, out=None)

	Calculate the pointwise division of x1 and x2

	Parameters:	x1 : LinearSpaceVector

The dividend

x2 : LinearSpaceVector

The divisor

out : LinearSpaceVector, optional

Vector to write the ratio to

	Returns:	out : LinearSpaceVector

Ratio of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.element

	
DiscreteLp.element(inp=None)

	Create an element from inp or from scratch.

	Parameters:	inp : object, optional

The input data to create an element from. Must be
recognizable by the LinearSpace.element method
of either RawDiscretization.dspace or
RawDiscretization.uspace.

	Returns:	element : DiscreteLpVector

The discretized element, calculated as
dspace.element(inp) or
restriction(uspace.element(inp)), tried in this order.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.inner

	
DiscreteLp.inner(x1, x2)

	Calculate the inner product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Factors in the inner product

	Returns:	out : LinearSpace.field element

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.lincomb

	
DiscreteLp.lincomb(a, x1, b=None, x2=None, out=None)

	Linear combination of vectors.

Calculates

out = a * x1

or, if b and y are given,

out = a*x1 + b*x2

with error checking of types.

	Parameters:	a : Scalar in the field of this space

Scalar to multiply x1 with.

x1 : LinearSpaceVector

The first of the summands

b : Scalar, optional

Scalar to multiply x2 with.

x2 : LinearSpaceVector, optional

The second of the summands

out : LinearSpaceVector, optional

The Vector that the result should be written to.

	Returns:	out : LinearSpaceVector

Result of the linear combination. If out was provided,
the returned object is a reference to it.

Notes

The vectors out, x1 and x2 may be aligned, thus a call

space.lincomb(x, 2, x, 3.14, out=x)

is (mathematically) equivalent to

x = x * (1 + 2 + 3.14)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.multiply

	
DiscreteLp.multiply(x1, x2, out=None)

	Calculate the pointwise product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Multiplicands in the product

out : LinearSpaceVector, optional

Vector to write the product to

	Returns:	out : LinearSpaceVector

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.norm

	
DiscreteLp.norm(x)

	Calculate the norm of a vector.

	Parameters:	x : LinearSpaceVector

The vector

	Returns:	out : float

Norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.one

	
DiscreteLp.one()

	Create a vector of ones.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.points

	
DiscreteLp.points()

	All sampling points in the partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLp

DiscreteLp.zero

	
DiscreteLp.zero()

	Create a vector of zeros.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

DiscreteLpVector

	
class odl.discr.lp_discr.DiscreteLpVector(space, data)

	Bases: odl.discr.discretization.DiscretizationVector

Representation of a DiscreteLp element.

Attributes

	T
	The transpose of a vector, the functional given by (.

	cell_sides
	Side lengths of a cell in an underlying uniform partition.

	cell_volume
	Cell volume of an underlying regular grid.

	dtype
	type of data storage.

	extension
	The extension operator associated with this vector.

	imag
	Imaginary part of this element.

	itemsize
	The size in bytes on one element of this type.

	nbytes
	The number of bytes this vector uses in memory.

	ndim
	Number of dimensions.

	ntuple
	Structure for data storage.

	order
	Axis ordering for array flattening.

	real
	Real part of this element.

	shape
	Multi-dimensional shape of this discrete function.

	size
	size of data storage.

	space
	Space to which this vector.

	ufunc
	DiscreteLpUFuncs, access to numpy style ufuncs.

Methods

	__eq__(other)
	Return vec == other.

	__getitem__(indices)
	Return self[indices].

	__setitem__(indices,values)
	Set values of this vector.

	asarray([out])
	Extract the data of this array as a numpy array.

	assign(other)
	Assign the values of other to self.

	conj([out])
	The complex conjugate of this element.

	copy()
	Create an identical (deep) copy of this vector.

	dist(other)
	Distance to other.

	divide(x,y)
	Divide by other inplace.

	inner(other)
	Inner product with other.

	lincomb(a,x1[,b,x2])
	Assign a linear combination to this vector.

	multiply(x,y)
	Multiply by other inplace.

	norm()
	Norm of vector

	restriction(ufunc)
	Restrict a continuous function and assign to this vector

	set_zero()
	Set this vector to zero.

	show([title,method,indices,show,fig])
	Display the function graphically.

	
__init__(space, data)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.T

	
DiscreteLpVector.T

	The transpose of a vector, the functional given by (. , self)

	Returns:	transpose : InnerProductOperator

Notes

This function is only defined in inner product spaces.

In a complex space, this takes the conjugate transpose of
the vector.

Examples

>>> from odl import Rn
>>> import numpy as np
>>> rn = Rn(3)
>>> x = rn.element([1, 2, 3])
>>> y = rn.element([2, 1, 3])
>>> x.T(y)
13.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.cell_sides

	
DiscreteLpVector.cell_sides

	Side lengths of a cell in an underlying uniform partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.cell_volume

	
DiscreteLpVector.cell_volume

	Cell volume of an underlying regular grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.dtype

	
DiscreteLpVector.dtype

	type of data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.extension

	
DiscreteLpVector.extension

	The extension operator associated with this vector.

	Returns:	extension_op : FunctionSetMapping

Operatior representing a continuous extension of this vector.

See also

	RawDiscretization.extension

	For full description

Examples

>>> import odl
>>> import numpy as np

Create continuous extension of 1d function with nearest neighbour

>>> X = odl.uniform_discr(0, 1, 3, nodes_on_bdry=True)
>>> x = X.element([0, 1, 0])
>>> x.extension(np.array([0.24, 0.26]))
array([0., 1.])

Create continuous extension of 1d function wiht linear interpolation

>>> X = odl.uniform_discr(0, 1, 3, nodes_on_bdry=True, interp='linear')
>>> x = X.element([0, 1, 0])
>>> x.extension(np.array([0.24, 0.26]))
array([0.48, 0.52])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.imag

	
DiscreteLpVector.imag

	Imaginary part of this element.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.itemsize

	
DiscreteLpVector.itemsize

	The size in bytes on one element of this type.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.nbytes

	
DiscreteLpVector.nbytes

	The number of bytes this vector uses in memory.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.ndim

	
DiscreteLpVector.ndim

	Number of dimensions.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.ntuple

	
DiscreteLpVector.ntuple

	Structure for data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.order

	
DiscreteLpVector.order

	Axis ordering for array flattening.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.real

	
DiscreteLpVector.real

	Real part of this element.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.shape

	
DiscreteLpVector.shape

	Multi-dimensional shape of this discrete function.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.size

	
DiscreteLpVector.size

	size of data storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.space

	
DiscreteLpVector.space

	Space to which this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.ufunc

	
DiscreteLpVector.ufunc

	DiscreteLpUFuncs, access to numpy style ufuncs.

Notes

These are optimized to use the underlying ntuple space and incur no
overhead unless these do.

Examples

>>> X = uniform_discr(0, 1, 2)
>>> x = X.element([1, -2])
>>> x.ufunc.absolute()
uniform_discr(0.0, 1.0, 2).element([1.0, 2.0])

These functions can also be used with broadcasting

>>> x.ufunc.add(3)
uniform_discr(0.0, 1.0, 2).element([4.0, 1.0])

and non-space elements

>>> x.ufunc.subtract([3, 3])
uniform_discr(0.0, 1.0, 2).element([-2.0, -5.0])

There is also support for various reductions (sum, prod, min, max)

>>> x.ufunc.sum()
-1.0

Also supports out parameter

>>> y = X.element([3, 4])
>>> out = X.element()
>>> result = x.ufunc.add(y, out=out)
>>> result
uniform_discr(0.0, 1.0, 2).element([4.0, 2.0])
>>> result is out
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.__eq__

	
DiscreteLpVector.__eq__(other)

	Return vec == other.

	Returns:	equals : bool

True if all entries of other are equal to this
vector’s entries, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.__getitem__

	
DiscreteLpVector.__getitem__(indices)

	Return self[indices].

	Parameters:	indices : int or slice

The position(s) that should be accessed

	Returns:	values : NtuplesBaseVector

The value(s) at the index (indices)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.__setitem__

	
DiscreteLpVector.__setitem__(indices, values)

	Set values of this vector.

	Parameters:	indices : int or slice

The position(s) that should be set

values : scalar, array-like or NtuplesVector

The value(s) that are to be assigned.
If indices is an int, values must be a single
value.
If indices is a slice, values must be
broadcastable to the size of the slice (same size,
shape (1,) or single value).
For indices=slice(None), i.e. in the call
vec[:] = values, a multi-dimensional array of correct
shape is allowed as values.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.asarray

	
DiscreteLpVector.asarray(out=None)

	Extract the data of this array as a numpy array.

	Parameters:	out : numpy.ndarray, optional

Array in which the result should be written in-place.
Has to be contiguous and of the correct dtype and
shape.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.assign

	
DiscreteLpVector.assign(other)

	Assign the values of other to self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.conj

	
DiscreteLpVector.conj(out=None)

	The complex conjugate of this element.

	Parameters:	out : DiscreteLpVector, optional

Element to which the complex conjugate is written.
Must be an element of this vector’s space.

	Returns:	out : DiscreteLpVector

The complex conjugate vector. If out is provided,
the returned object is a reference to it.

Examples

>>> discr = uniform_discr(0, 1, 4, dtype='complex')
>>> x = discr.element([5+1j, 3, 2-2j, 1j])
>>> y = x.conj(); print(y)
[(5-1j), (3-0j), (2+2j), -1j]

The out parameter allows you to avoid a copy:

>>> z = discr.element()
>>> z_out = x.conj(out=z); print(z)
[(5-1j), (3-0j), (2+2j), -1j]
>>> z_out is z
True

It can also be used for in-place conjugation:

>>> x_out = x.conj(out=x); print(x)
[(5-1j), (3-0j), (2+2j), -1j]
>>> x_out is x
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.copy

	
DiscreteLpVector.copy()

	Create an identical (deep) copy of this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.dist

	
DiscreteLpVector.dist(other)

	Distance to other.

LinearSpace.dist

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.divide

	
DiscreteLpVector.divide(x, y)

	Divide by other inplace.

LinearSpace.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.inner

	
DiscreteLpVector.inner(other)

	Inner product with other.

LinearSpace.inner

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.lincomb

	
DiscreteLpVector.lincomb(a, x1, b=None, x2=None)

	Assign a linear combination to this vector.

Implemented as space.lincomb(a, x1, b, x2, out=self).

LinearSpace.lincomb

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.multiply

	
DiscreteLpVector.multiply(x, y)

	Multiply by other inplace.

LinearSpace.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.norm

	
DiscreteLpVector.norm()

	Norm of vector

LinearSpace.norm

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.restriction

	
DiscreteLpVector.restriction(ufunc)

	Restrict a continuous function and assign to this vector

	Parameters:	ufunc : self.space.uspace element

The continuous function that should be restricted.

See also

	RawDiscretization.restriction

	For full description

Examples

>>> import odl
>>> import numpy as np

Create discretization

>>> X = odl.uniform_discr(0, 1, 5)
>>> x = X.element()

Assign x according to continuous vector

>>> x.restriction(lambda x: x)
>>> print(x) # Print values at gridpoints (which are centered)
[0.1, 0.3, 0.5, 0.7, 0.9]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.set_zero

	
DiscreteLpVector.set_zero()

	Set this vector to zero.

LinearSpace.zero

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

 	DiscreteLpVector

DiscreteLpVector.show

	
DiscreteLpVector.show(title=None, method='', indices=None, show=False, fig=None, **kwargs)

	Display the function graphically.

	Parameters:	title : str, optional

Set the title of the figure

method : str, optional

1d methods:

‘plot’ : graph plot

‘scatter’ : scattered 2d points
(2nd axis <-> value)

2d methods:

‘imshow’ : image plot with coloring according to value,
including a colorbar.

‘scatter’ : cloud of scattered 3d points
(3rd axis <-> value)

indices : index expression, optional

Display a slice of the array instead of the full array. The
index expression is most easily created with the numpy.s_
constructor, i.e. supply np.s_[:, 1, :] to display the
first slice along the second axis.
For data with 3 or more dimensions, the 2d slice in the first
two axes at the “middle” along the remaining axes is shown
(semantically [:, :, shape[2:] // 2]).

show : bool, optional

If the plot should be showed now or deferred until later.

fig : matplotlib.figure.Figure

The figure to show in. Expected to be of same “style”, as
the figure given by this function. The most common use case
is that fig is the return value from an earlier call to
this function.

kwargs : {‘figsize’, ‘saveto’, ‘clim’, ...}

Extra keyword arguments passed on to display method
See the Matplotlib functions for documentation of extra
options.

	Returns:	fig : matplotlib.figure.Figure

The resulting figure. It is also shown to the user.

See also

	odl.util.graphics.show_discrete_data

	Underlying implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

discr_sequence_space

	
odl.discr.lp_discr.discr_sequence_space(shape, exponent=2.0, impl='numpy', **kwargs)

	Return an object mimicing the sequence space l^p(R^d).

The returned object is a DiscreteLp without restriction and
extension operators. It uses a grid with stride 1 and no
weighting.

	Parameters:	shape : sequence of int

Multi-dimensional size of the elements in this space

exponent : positive float, optional

The parameter p in `L^p. If the exponent is
not equal to the default 2.0, the space has no inner
product.

impl : {‘numpy’, ‘cuda’}

Implementation of the data storage arrays

dtype : dtype

Data type for the discretized space

Default for ‘numpy’: ‘float64’

Default for ‘cuda’: ‘float32’

order : {‘C’, ‘F’}, optional

Ordering of the axes in the data storage. ‘C’ means the
first axis varies slowest, the last axis fastest;
vice versa for ‘F’.
Default: ‘C’

	Returns:	seqspc : DiscreteLp

The sequence-space-like discrete Lp

Examples

>>> seq_spc = discr_sequence_space((3, 3))
>>> seq_spc.one().norm() == 3.0
True
>>> seq_spc = discr_sequence_space((3, 3), exponent=1)
>>> seq_spc.one().norm() == 9.0
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

uniform_discr

	
odl.discr.lp_discr.uniform_discr(min_corner, max_corner, nsamples, exponent=2.0, interp='nearest', impl='numpy', **kwargs)

	Discretize an Lp function space by uniform sampling.

	Parameters:	min_corner : float or tuple of float

Minimum corner of the result.

nsamples : float or tuple of float

Minimum corner of the result.

nsamples : int or tuple of int

Number of samples per axis. For dimension >= 2, a tuple is
required.

exponent : positive float, optional

The parameter [image: p] in [image: L^p]. If the exponent is not
equal to the default 2.0, the space has no inner product.

interp : str or sequence of str, optional

Interpolation type to be used for discretization.
A sequence is interpreted as interpolation scheme per axis.

‘nearest’ : use nearest-neighbor interpolation

‘linear’ : use linear interpolation

impl : {‘numpy’, ‘cuda’}, optional

Implementation of the data storage arrays

nodes_on_bdry : bool or sequence, optional

If a sequence is provided, it determines per axis whether to
place the last grid point on the boundary (True) or shift it
by half a cell size into the interior (False). In each axis,
an entry may consist in a single bool or a 2-tuple of
bool. In the latter case, the first tuple entry decides for
the left, the second for the right boundary. The length of the
sequence must be array.ndim.

A single boolean is interpreted as a global choice for all
boundaries.
Default: False

dtype : dtype, optional

Data type for the discretized space

Default for ‘numpy’: ‘float64’ / ‘complex128’

Default for ‘cuda’: ‘float32’

order : {‘C’, ‘F’}, optional

Ordering of the axes in the data storage. ‘C’ means the
first axis varies slowest, the last axis fastest;
vice versa for ‘F’.
Default: ‘C’

weighting : {‘const’, ‘none’}, optional

Weighting of the discretized space functions.

‘const’ : weight is a constant, the cell volume (default)

‘none’ : no weighting

	Returns:	discr : DiscreteLp

The uniformly discretized function space

See also

	uniform_discr_frompartition

	uniform Lp discretization using a given uniform partition of a function domain

	uniform_discr_fromspace

	uniform discretization from an existing function space

Examples

Create real space:

>>> uniform_discr([0, 0], [1, 1], [10, 10])
uniform_discr([0.0, 0.0], [1.0, 1.0], [10, 10])

Can create complex space by giving a dtype

>>> uniform_discr([0, 0], [1, 1], [10, 10], dtype='complex')
uniform_discr([0.0, 0.0], [1.0, 1.0], [10, 10], dtype='complex')

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

uniform_discr_frompartition

	
odl.discr.lp_discr.uniform_discr_frompartition(partition, exponent=2.0, interp='nearest', impl='numpy', **kwargs)

	Discretize an Lp function space given a uniform partition.

	Parameters:	partition : RectPartition

Regular (uniform) partition to be used for discretization

exponent : positive float, optional

The parameter p in L^p. If the exponent is not
equal to the default 2.0, the space has no inner product.

interp : str or sequence of str, optional

Interpolation type to be used for discretization.
A sequence is interpreted as interpolation scheme per axis.

‘nearest’ : use nearest-neighbor interpolation

‘linear’ : use linear interpolation

impl : {‘numpy’, ‘cuda’}, optional

Implementation of the data storage arrays

	Returns:	discr : DiscreteLp

The uniformly discretized function space

	Other Parameters:

		order : {‘C’, ‘F’}, optional

Axis ordering in the data storage. Default: ‘C’

dtype : dtype

Data type for the discretized space

Default for ‘numpy’: ‘float64’ / ‘complex128’

Default for ‘cuda’: ‘float32’

weighting : {‘const’, ‘none’}, optional

Weighting of the discretized space functions.

‘const’ : weight is a constant, the cell volume (default)

‘none’ : no weighting

See also

	uniform_discr

	implicit uniform Lp discretization

	uniform_discr_fromspace

	uniform Lp discretization from an existing function space

	odl.discr.partition.uniform_partition

	partition of the function domain

Examples

>>> from odl import uniform_partition
>>> part = uniform_partition(0, 1, 10)
>>> uniform_discr_frompartition(part)
uniform_discr(0.0, 1.0, 10)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	lp_discr

uniform_discr_fromspace

	
odl.discr.lp_discr.uniform_discr_fromspace(fspace, nsamples, exponent=2.0, interp='nearest', impl='numpy', **kwargs)

	Discretize an Lp function space by uniform partition.

	Parameters:	fspace : FunctionSpace

Continuous function space. Its domain must be an
IntervalProd instance.

nsamples : int or tuple of int

Number of samples per axis. For dimension >= 2, a tuple is
required.

exponent : positive float, optional

The parameter p in L^p. If the exponent is not
equal to the default 2.0, the space has no inner product.

interp : str or sequence of str, optional

Interpolation type to be used for discretization.
A sequence is interpreted as interpolation scheme per axis.

‘nearest’ : use nearest-neighbor interpolation

‘linear’ : use linear interpolation

impl : {‘numpy’, ‘cuda’}, optional

Implementation of the data storage arrays

	Returns:	discr : DiscreteLp

The uniformly discretized function space

	Other Parameters:

		nodes_on_bdry : bool or boolean array-like, optional

If True, place the outermost grid points at the boundary. For
False, they are shifted by half a cell size to the ‘inner’.
If an array-like is given, it must have shape (ndim, 2),
where ndim is the number of dimensions. It defines per axis
whether the leftmost (first column) and rightmost (second column)
nodes node lie on the boundary.
Default: False

order : {‘C’, ‘F’}, optional

Axis ordering in the data storage. Default: ‘C’

dtype : dtype, optional

Data type for the discretized space. If not specified, the
FunctionSpace.out_dtype of fspace is used.

weighting : {‘const’, ‘none’}, optional

Weighting of the discretized space functions.

‘const’ : weight is a constant, the cell volume (default)

‘none’ : no weighting

See also

	uniform_discr

	implicit uniform Lp discretization

	uniform_discr_frompartition

	uniform Lp discretization using a given uniform partition of a function domain

	odl.discr.partition.uniform_partition

	partition of the function domain

Examples

>>> from odl import Interval, FunctionSpace
>>> intv = Interval(0, 1)
>>> space = FunctionSpace(intv)
>>> uniform_discr_fromspace(space, 10)
uniform_discr(0.0, 1.0, 10)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

partition

Partitons of interval products based on tensor grids.

A partition of a set is a finite collection of nonempty, pairwise
disjoint subsets whose union is the original set. The partitions
considered here are based on hypercubes, i.e. the tensor products
of partitions of intervals.

Classes

	RectPartition(intv_prod,grid)
	Rectangular partition by hypercubes based on TensorGrid.

Functions

	uniform_partition(begin,end,num_nodes[,...])
	Return a partition of [begin, end] with equally sized cells.

	uniform_partition_fromgrid(grid[,begin,end])
	Return a partition of an interval product based on a given grid.

	uniform_partition_fromintv(intv_prod,num_nodes)
	Return a partition of an interval product into equally sized cells.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

RectPartition

	
class odl.discr.partition.RectPartition(intv_prod, grid)

	Bases: object

Rectangular partition by hypercubes based on TensorGrid.

In 1d, a partition of an interval is implicitly defined by a
collection of points x[0], ..., x[N-1] (a grid) which are chosen to
lie in the center of the subintervals. The i-th subinterval is thus
given by:

I[i] = [(x[i-1]+x[i])/2, (x[i]+x[i+1])/2]

Attributes

	begin
	Minimum coordinates of the partitioned set.

	boundary_cell_fractions
	Return a tuple of contained fractions of boundary cells.

	cell_boundary_vecs
	Return the cell boundaries as coordinate vectors.

	cell_sides
	Side lengths of all ‘inner’ cells of a regular partition.

	cell_sizes_vecs
	Return the cell sizes as coordinate vectors.

	cell_volume
	Volume of the ‘inner’ cells, regardless of begin and end.

	end
	Maximum coordinates of the partitioned set.

	grid
	The TensorGrid defining this partition.

	is_regular
	Return True if self.grid is a RegularGrid.

	meshgrid
	Return the sparse meshgrid of sampling points.

	ndim
	Number of dimensions.

	set
	The partitioned set, an IntervalProd.

	shape
	Number of cells per axis, equal to self.grid.shape.

	size
	Total number of cells, equal to self.grid.size.

Methods

	__eq__(other)
	Return self == other.

	approx_equals(other,atol)
	Return True in case of approximate equality.

	extent()
	Return a vector containing the total extent (max - min).

	insert(index,other)
	Return a copy with other inserted before index.

	max()
	Return the maximum point of the partitioned set.

	min()
	Return the minimum point of the partitioned set.

	points()
	Return the sampling grid points.

	
__init__(intv_prod, grid)

	Initialize a new instance.

	Parameters:	intv_prod : IntervalProd

Set to be partitioned

grid : TensorGrid

Spatial points supporting the partition. They must be
contained in intv_prod.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.begin

	
RectPartition.begin

	Minimum coordinates of the partitioned set.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.boundary_cell_fractions

	
RectPartition.boundary_cell_fractions

	Return a tuple of contained fractions of boundary cells.

Since the outermost grid points can have any distance to the
boundary of the partitioned set, the “natural” outermost cell
around these points can either be cropped or extended. This
property is a tuple of (float, float) tuples, one entry per
dimension, where the fractions of the left- and rightmost
cells inside the set are stored. If a grid point lies exactly
on the boundary, the value is 1/2 since the cell is cut in half.
Otherwise, any value larger than 1/2 is possible.

	Returns:	on_bdry : tuple of 2-tuple of float

Each 2-tuple contains the fraction of the leftmost
(first entry) and rightmost (second entry) cell in the
partitioned set in the corresponding dimension.

See also

cell_boundary_vecs

Examples

We create a partition of the rectangle [0, 1.5] x [-2, 2] with
the grid points [0, 1] x [-1, 0, 2]. The “natural” cells at the
boundary would be:

[-0.5, 0.5] and [0.5, 1.5] in the first axis

[-1.5, -0.5] and [1, 3] in the second axis

Thus, in the first axis, the fractions contained in [0, 1.5]
are 0.5 and 1, and in the second axis, [-2, 2] contains the
fractions 1.5 and 0.5.

>>> rect = IntervalProd([0, -2], [1.5, 2])
>>> grid = TensorGrid([0, 1], [-1, 0, 2])
>>> part = RectPartition(rect, grid)
>>> part.boundary_cell_fractions
((0.5, 1.0), (1.5, 0.5))

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.cell_boundary_vecs

	
RectPartition.cell_boundary_vecs

	Return the cell boundaries as coordinate vectors.

Examples

>>> rect = IntervalProd([0, -1], [1, 2])
>>> grid = TensorGrid([0, 1], [-1, 0, 2])
>>> part = RectPartition(rect, grid)
>>> part.cell_boundary_vecs
(array([0. , 0.5, 1.]), array([-1. , -0.5, 1. , 2.]))

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.cell_sides

	
RectPartition.cell_sides

	Side lengths of all ‘inner’ cells of a regular partition.

Only defined if self.grid is a RegularGrid.

Examples

We create a partition of the rectangle [0, 1] x [-1, 2] into
3 x 3 cells, where the grid points lie on the boundary. This
means that the grid points are [0, 0.5, 1] x [-1, 0.5, 2],
i.e. the inner cell has side lengths 0.5 x 1.5:

>>> rect = IntervalProd([0, -1], [1, 2])
>>> grid = RegularGrid([0, -1], [1, 2], (3, 3))
>>> part = RectPartition(rect, grid)
>>> part.cell_sides
array([0.5, 1.5])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.cell_sizes_vecs

	
RectPartition.cell_sizes_vecs

	Return the cell sizes as coordinate vectors.

	Returns:	csizes : tuple of numpy.ndarray

The cell sizes per axis. The length of the vectors is the
same as the corresponding grid.coord_vectors.
For axes with 1 grid point, cell size is set to 0.0.

Examples

We create a partition of the rectangle [0, 1] x [-1, 2] into
2 x 3 cells with the grid points [0, 1] x [-1, 0, 2]. This
implies that the cell boundaries are given as
[0, 0.5, 1] x [-1, -0.5, 1, 2], hence the cell size vectors
are [0.5, 0.5] x [0.5, 1.5, 1]:

>>> rect = IntervalProd([0, -1], [1, 2])
>>> grid = TensorGrid([0, 1], [-1, 0, 2])
>>> part = RectPartition(rect, grid)
>>> part.cell_boundary_vecs
(array([0. , 0.5, 1.]), array([-1. , -0.5, 1. , 2.]))
>>> part.cell_sizes_vecs
(array([0.5, 0.5]), array([0.5, 1.5, 1.]))

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.cell_volume

	
RectPartition.cell_volume

	Volume of the ‘inner’ cells, regardless of begin and end.

Only defined if self.grid is a RegularGrid.

Examples

We create a partition of the rectangle [0, 1] x [-1, 2] into
3 x 3 cells, where the grid points lie on the boundary. This
means that the grid points are [0, 0.5, 1] x [-1, 0.5, 2],
i.e. the inner cell has side lengths 0.5 x 1.5:

>>> rect = IntervalProd([0, -1], [1, 2])
>>> grid = RegularGrid([0, -1], [1, 2], (3, 3))
>>> part = RectPartition(rect, grid)
>>> part.cell_sides
array([0.5, 1.5])
>>> part.cell_volume
0.75

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.end

	
RectPartition.end

	Maximum coordinates of the partitioned set.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.grid

	
RectPartition.grid

	The TensorGrid defining this partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.is_regular

	
RectPartition.is_regular

	Return True if self.grid is a RegularGrid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.meshgrid

	
RectPartition.meshgrid

	Return the sparse meshgrid of sampling points.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.ndim

	
RectPartition.ndim

	Number of dimensions.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.set

	
RectPartition.set

	The partitioned set, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.shape

	
RectPartition.shape

	Number of cells per axis, equal to self.grid.shape.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.size

	
RectPartition.size

	Total number of cells, equal to self.grid.size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.__eq__

	
RectPartition.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.approx_equals

	
RectPartition.approx_equals(other, atol)

	Return True in case of approximate equality.

	Returns:	approx_eq : bool

True if other is a RectPartition instance with
self.set == other.set up to atol and
self.grid == other.other up to atol.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.extent

	
RectPartition.extent()

	Return a vector containing the total extent (max - min).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.insert

	
RectPartition.insert(index, other)

	Return a copy with other inserted before index.

	Parameters:	index : int

Index of the dimension before which other is to
be inserted. Negative indices count backwards from
self.ndim.

other : RectPartition

Partition to be inserted

	Returns:	newpart : RectPartition

Partition with the inserted other partition

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.max

	
RectPartition.max()

	Return the maximum point of the partitioned set.

See also

odl.set.domain.IntervalProd.max

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.min

	
RectPartition.min()

	Return the minimum point of the partitioned set.

See also

odl.set.domain.IntervalProd.min

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

 	RectPartition

RectPartition.points

	
RectPartition.points()

	Return the sampling grid points.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

uniform_partition

	
odl.discr.partition.uniform_partition(begin, end, num_nodes, nodes_on_bdry=False)

	Return a partition of [begin, end] with equally sized cells.

	Parameters:	begin, end : array-like

Vectors defining the begin end end points of an IntervalProd
(a rectangular box)

num_nodes : int or sequence of int

Number of nodes per axis. For 1d intervals, a single integer
can be specified.

nodes_on_bdry : bool or sequence, optional

If a sequence is provided, it determines per axis whether to
place the last grid point on the boundary (True) or shift it
by half a cell size into the interior (False). In each axis,
an entry may consist in a single bool or a 2-tuple of
bool. In the latter case, the first tuple entry decides for
the left, the second for the right boundary. The length of the
sequence must be array.ndim.

A single boolean is interpreted as a global choice for all
boundaries.

See also

	uniform_partition_fromintv

	partition an existing set

	uniform_partition_fromgrid

	use an existing grid as basis

Examples

By default, no grid points are placed on the boundary:

>>> part = uniform_partition(0, 1, 4)
>>> part.cell_boundary_vecs
(array([0. , 0.25, 0.5 , 0.75, 1.]),)
>>> part.grid.coord_vectors
(array([0.125, 0.375, 0.625, 0.875]),)

This can be changed with the nodes_on_bdry parameter:

>>> part = uniform_partition(0, 1, 3, nodes_on_bdry=True)
>>> part.cell_boundary_vecs
(array([0. , 0.25, 0.75, 1.]),)
>>> part.grid.coord_vectors
(array([0. , 0.5, 1.]),)

We can specify this per axis, too. In this case we choose both
in the first axis and only the rightmost in the second:

>>> part = uniform_partition([0, 0], [1, 1], (3, 3),
... nodes_on_bdry=(True, (False, True)))
...
>>> part.cell_boundary_vecs[0] # first axis, as above
array([0. , 0.25, 0.75, 1.])
>>> part.grid.coord_vectors[0]
array([0. , 0.5, 1.])
>>> part.cell_boundary_vecs[1] # second, asymmetric axis
array([0. , 0.4, 0.8, 1.])
>>> part.grid.coord_vectors[1]
array([0.2, 0.6, 1.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

uniform_partition_fromgrid

	
odl.discr.partition.uniform_partition_fromgrid(grid, begin=None, end=None)

	Return a partition of an interval product based on a given grid.

This method is complementary to
uniform_partition_fromintv in that it infers the
set to be partitioned from a given grid and optional parameters
for the begin and the end of the set.

	Parameters:	grid : TensorGrid

Grid on which the partition is based

begin, end : array-like or dictionary

Spatial points defining the begin and end of an interval
product to be partitioned. The points can be specified in
two ways:

array-like: These values are used directly as begin and/or end.

dictionary: Index-value pairs specifying an axis and a spatial
coordinate to be used in that axis. In axes which are not a key
in the dictionary, the coordinate for the vector is calculated
as:

begin = x[0] - (x[1] - x[0]) / 2
end = x[-1] + (x[-1] - x[-2]) / 2

See Examples below.

In general, begin may not be larger than grid.min_pt,
and end not smaller than grid.max_pt in any component.
None is equivalent to an empty dictionary, i.e. the values
are calculated in each dimension.

See also

uniform_partition_fromintv

Examples

Have begin and end of the bounding box automatically calculated:

>>> grid = RegularGrid(0, 1, 3)
>>> grid.coord_vectors
(array([0. , 0.5, 1.]),)
>>> part = uniform_partition_fromgrid(grid)
>>> part.cell_boundary_vecs
(array([-0.25, 0.25, 0.75, 1.25]),)

Begin and end can be given explicitly as array-like:

>>> part = uniform_partition_fromgrid(grid, begin=0, end=1)
>>> part.cell_boundary_vecs
(array([0. , 0.25, 0.75, 1.]),)

Using dictionaries, selective axes can be explicitly set. The
keys refer to axes, the values to the coordinates to use:

>>> grid = RegularGrid([0, 0], [1, 1], (3, 3))
>>> part = uniform_partition_fromgrid(grid, begin={0: -1}, end={-1: 3})
>>> part.cell_boundary_vecs[0]
array([-1. , 0.25, 0.75, 1.25])
>>> part.cell_boundary_vecs[1]
array([-0.25, 0.25, 0.75, 3.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	discr

 	partition

uniform_partition_fromintv

	
odl.discr.partition.uniform_partition_fromintv(intv_prod, num_nodes, nodes_on_bdry=False)

	Return a partition of an interval product into equally sized cells.

	Parameters:	intv_prod : IntervalProd

Interval product to be partitioned

num_nodes : int or sequence of int

Number of nodes per axis. For 1d intervals, a single integer
can be specified.

nodes_on_bdry : bool or sequence, optional

If a sequence is provided, it determines per axis whether to
place the last grid point on the boundary (True) or shift it
by half a cell size into the interior (False). In each axis,
an entry may consist in a single bool or a 2-tuple of
bool. In the latter case, the first tuple entry decides for
the left, the second for the right boundary. The length of the
sequence must be array.ndim.

A single boolean is interpreted as a global choice for all
boundaries.

See also

uniform_partition_fromgrid

Examples

By default, no grid points are placed on the boundary:

>>> interval = IntervalProd(0, 1)
>>> part = uniform_partition_fromintv(interval, 4)
>>> part.cell_boundary_vecs
(array([0. , 0.25, 0.5 , 0.75, 1.]),)
>>> part.grid.coord_vectors
(array([0.125, 0.375, 0.625, 0.875]),)

This can be changed with the nodes_on_bdry parameter:

>>> part = uniform_partition_fromintv(interval, 3, nodes_on_bdry=True)
>>> part.cell_boundary_vecs
(array([0. , 0.25, 0.75, 1.]),)
>>> part.grid.coord_vectors
(array([0. , 0.5, 1.]),)

We can specify this per axis, too. In this case we choose both
in the first axis and only the rightmost in the second:

>>> rect = IntervalProd([0, 0], [1, 1])
>>> part = uniform_partition_fromintv(
... rect, (3, 3), nodes_on_bdry=(True, (False, True)))
...
>>> part.cell_boundary_vecs[0] # first axis, as above
array([0. , 0.25, 0.75, 1.])
>>> part.grid.coord_vectors[0]
array([0. , 0.5, 1.])
>>> part.cell_boundary_vecs[1] # second, asymmetric axis
array([0. , 0.4, 0.8, 1.])
>>> part.grid.coord_vectors[1]
array([0.2, 0.6, 1.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

operator

Mathematical operators in ODL.

Modules

	default_ops
	ConstantOperator

	IdentityOperator

	InnerProductOperator

	LinCombOperator

	MultiplyOperator

	ResidualOperator

	ScalingOperator

	ZeroOperator

	operator
	FunctionalLeftVectorMult

	OpDomainError

	OpNotImplementedError

	OpRangeError

	OpTypeError

	Operator

	OperatorComp

	OperatorLeftScalarMult

	OperatorLeftVectorMult

	OperatorPointwiseProduct

	OperatorRightScalarMult

	OperatorRightVectorMult

	OperatorSum

	simple_operator

	oputils
	matrix_representation

	power_method_opnorm

	pspace_ops
	BroadcastOperator

	ComponentProjection

	ComponentProjectionAdjoint

	ProductSpaceOperator

	ReductionOperator

	diagonal_operator

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

default_ops

Default operators defined on any (reasonable) space.

Classes

	ConstantOperator(vector[,dom])
	Operator that always returns the same value

	IdentityOperator(space)
	Operator mapping each element to itself.

	InnerProductOperator(vector)
	Operator taking the inner product with a fixed vector.

	LinCombOperator(space,a,b)
	Operator mapping two space elements to a linear combination.

	MultiplyOperator(y[,domain])
	Operator multiplying two elements.

	ResidualOperator(op,vec)
	Operator that calculates the residual op(x) - vec.

	ScalingOperator(space,scalar)
	Operator of multiplication with a scalar.

	ZeroOperator(space)
	Operator mapping each element to the zero element.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

ConstantOperator

	
class odl.operator.default_ops.ConstantOperator(vector, dom=None)

	Bases: odl.operator.operator.Operator

Operator that always returns the same value

ConstantOperator(vector)(x) <==> vector

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Return the constant vector or assign it to out.

	derivative(point)
	Return the operator derivative at point.

	
__init__(vector, dom=None)

	Initialize an instance.

	Parameters:	vector : LinearSpaceVector

The vector constant to be returned

dom : LinearSpace, default

The domain of the operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ConstantOperator

ConstantOperator.adjoint

	
ConstantOperator.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ConstantOperator

ConstantOperator.domain

	
ConstantOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ConstantOperator

ConstantOperator.inverse

	
ConstantOperator.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ConstantOperator

ConstantOperator.is_functional

	
ConstantOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ConstantOperator

ConstantOperator.is_linear

	
ConstantOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ConstantOperator

ConstantOperator.range

	
ConstantOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ConstantOperator

ConstantOperator.__call__

	
ConstantOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	default_ops

 	ConstantOperator

ConstantOperator._call

	
ConstantOperator._call(x, out=None)

	Return the constant vector or assign it to out.

	Parameters:	x : domain element

An element of the domain

out : range element

Vector that gets assigned to the constant vector

	Returns:	out : range element

Result of the assignment. If out was provided, the
returned object is a reference to it.

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> x = r3.element([1, 2, 3])
>>> op = ConstantOperator(x)
>>> op(x, out=r3.element())
Rn(3).element([1.0, 2.0, 3.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ConstantOperator

ConstantOperator.derivative

	
ConstantOperator.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

IdentityOperator

	
class odl.operator.default_ops.IdentityOperator(space)

	Bases: odl.operator.default_ops.ScalingOperator

Operator mapping each element to itself.

Attributes

	adjoint
	Adjoint, given as scaling with the conjugate of the scalar.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the inverse operator.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Scale input and write to output.

	derivative(point)
	Return the operator derivative at point.

	
__init__(space)

	Initialize an IdentityOperator instance.

	Parameters:	space : LinearSpace

The space of elements which the operator is acting on

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	IdentityOperator

IdentityOperator.adjoint

	
IdentityOperator.adjoint

	Adjoint, given as scaling with the conjugate of the scalar.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	IdentityOperator

IdentityOperator.domain

	
IdentityOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	IdentityOperator

IdentityOperator.inverse

	
IdentityOperator.inverse

	Return the inverse operator.

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> vec = r3.element([1, 2, 3])
>>> op = ScalingOperator(r3, 2.0)
>>> inv = op.inverse
>>> inv(op(vec)) == vec
True
>>> op(inv(vec)) == vec
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	IdentityOperator

IdentityOperator.is_functional

	
IdentityOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	IdentityOperator

IdentityOperator.is_linear

	
IdentityOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	IdentityOperator

IdentityOperator.range

	
IdentityOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	IdentityOperator

IdentityOperator.__call__

	
IdentityOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	default_ops

 	IdentityOperator

IdentityOperator._call

	
IdentityOperator._call(x, out=None)

	Scale input and write to output.

	Parameters:	x : domain element

input vector to be scaled

out : range element, optional

Output vector to which the result is written

	Returns:	out : range element

Result of the scaling. If out was provided, the
returned object is a reference to it.

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> vec = r3.element([1, 2, 3])
>>> out = r3.element()
>>> op = ScalingOperator(r3, 2.0)
>>> op(vec, out) # In place, Returns out
Rn(3).element([2.0, 4.0, 6.0])
>>> out
Rn(3).element([2.0, 4.0, 6.0])
>>> op(vec) # Out of place
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	IdentityOperator

IdentityOperator.derivative

	
IdentityOperator.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

InnerProductOperator

	
class odl.operator.default_ops.InnerProductOperator(vector)

	Bases: odl.operator.operator.Operator

Operator taking the inner product with a fixed vector.

InnerProductOperator(vec)(x) <==> x.inner(vec)

This is only applicable in inner product spaces.

Attributes

	T
	The vector of this operator.

	adjoint
	The adjoint operator.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x)
	Multiply the input and write to output.

	derivative(point)
	Return the operator derivative at point.

	
__init__(vector)

	Initialize a InnerProductOperator instance.

	Parameters:	vector : LinearSpaceVector

The vector to take the inner product with

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	InnerProductOperator

InnerProductOperator.T

	
InnerProductOperator.T

	The vector of this operator.

	Returns:	vector : LinearSpaceVector

Vector used in this operator

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> x = r3.element([1, 2, 3])
>>> x.T
InnerProductOperator(Rn(3).element([1.0, 2.0, 3.0]))
>>> x.T.T
Rn(3).element([1.0, 2.0, 3.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	InnerProductOperator

InnerProductOperator.adjoint

	
InnerProductOperator.adjoint

	The adjoint operator.

	Returns:	adjoint : MultiplyOperator

The operator of multiplication with vector.

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> x = r3.element([1, 2, 3])
>>> op = InnerProductOperator(x)
>>> op.adjoint(2.0)
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	InnerProductOperator

InnerProductOperator.domain

	
InnerProductOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	InnerProductOperator

InnerProductOperator.inverse

	
InnerProductOperator.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	InnerProductOperator

InnerProductOperator.is_functional

	
InnerProductOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	InnerProductOperator

InnerProductOperator.is_linear

	
InnerProductOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	InnerProductOperator

InnerProductOperator.range

	
InnerProductOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	InnerProductOperator

InnerProductOperator.__call__

	
InnerProductOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	default_ops

 	InnerProductOperator

InnerProductOperator._call

	
InnerProductOperator._call(x)

	Multiply the input and write to output.

	Parameters:	x : vector.space element

An element in the space of the vector

	Returns:	out : field element

Result of the inner product calculation

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> x = r3.element([1, 2, 3])
>>> op = InnerProductOperator(x)
>>> op(r3.element([1, 2, 3]))
14.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	InnerProductOperator

InnerProductOperator.derivative

	
InnerProductOperator.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

LinCombOperator

	
class odl.operator.default_ops.LinCombOperator(space, a, b)

	Bases: odl.operator.operator.Operator

Operator mapping two space elements to a linear combination.

This opertor calculates:

out = a*x[0] + b*x[1]

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Linearly combine the input and write to output.

	derivative(point)
	Return the operator derivative at point.

	
__init__(space, a, b)

	Initialize a LinCombOperator instance.

	Parameters:	space : LinearSpace

The space of elements which the operator is acting on

a, b : scalar

Scalars to multiply x[0] and x[1] with, respectively

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	LinCombOperator

LinCombOperator.adjoint

	
LinCombOperator.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	LinCombOperator

LinCombOperator.domain

	
LinCombOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	LinCombOperator

LinCombOperator.inverse

	
LinCombOperator.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	LinCombOperator

LinCombOperator.is_functional

	
LinCombOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	LinCombOperator

LinCombOperator.is_linear

	
LinCombOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	LinCombOperator

LinCombOperator.range

	
LinCombOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	LinCombOperator

LinCombOperator.__call__

	
LinCombOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	default_ops

 	LinCombOperator

LinCombOperator._call

	
LinCombOperator._call(x, out=None)

	Linearly combine the input and write to output.

	Parameters:	x : domain element

An element of the operator domain (2-tuple of space
elements) whose linear combination is calculated

out : `range element

Vector to which the result is written

	Returns:	out : range element

Result of the linear combination. If out was provided,
the returned object is a reference to it.

Examples

>>> from odl import Rn, ProductSpace
>>> r3 = Rn(3)
>>> r3xr3 = ProductSpace(r3, r3)
>>> xy = r3xr3.element([[1, 2, 3], [1, 2, 3]])
>>> z = r3.element()
>>> op = LinCombOperator(r3, 1.0, 1.0)
>>> op(xy, out=z) # Returns z
Rn(3).element([2.0, 4.0, 6.0])
>>> z
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	LinCombOperator

LinCombOperator.derivative

	
LinCombOperator.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

MultiplyOperator

	
class odl.operator.default_ops.MultiplyOperator(y, domain=None)

	Bases: odl.operator.operator.Operator

Operator multiplying two elements.

MultiplyOperator(y)(x) <==> x * y

Here, x is a LinearSpaceVector or Field element and
y is a LinearSpaceVector.
Hence, this operator can be defined either on a LinearSpace or on
a Field. In the first case it is the pointwise multiplication,
in the second the scalar multiplication.

Attributes

	adjoint
	The adjoint operator.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Multiply the input and write to output.

	derivative(point)
	Return the operator derivative at point.

	
__init__(y, domain=None)

	Initialize a MultiplyOperator instance.

	Parameters:	y : LinearSpaceVector

The value to multiply by

domain : LinearSpace or Field, optional

The set to take values in. Default: x.space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	MultiplyOperator

MultiplyOperator.adjoint

	
MultiplyOperator.adjoint

	The adjoint operator.

	Returns:	adjoint : {InnerProductOperator, MultiplyOperator}

If the domain of this operator is the scalar field of a
LinearSpace the adjoint is the inner product with y,
else it is the multiplication with y

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> x = r3.element([1, 2, 3])

Multiply by vector

>>> op = MultiplyOperator(x)
>>> out = r3.element()
>>> op.adjoint(x)
Rn(3).element([1.0, 4.0, 9.0])

Multiply by scalar

>>> op2 = MultiplyOperator(x, domain=r3.field)
>>> op2.adjoint(x)
14.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	MultiplyOperator

MultiplyOperator.domain

	
MultiplyOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	MultiplyOperator

MultiplyOperator.inverse

	
MultiplyOperator.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	MultiplyOperator

MultiplyOperator.is_functional

	
MultiplyOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	MultiplyOperator

MultiplyOperator.is_linear

	
MultiplyOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	MultiplyOperator

MultiplyOperator.range

	
MultiplyOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	MultiplyOperator

MultiplyOperator.__call__

	
MultiplyOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	default_ops

 	MultiplyOperator

MultiplyOperator._call

	
MultiplyOperator._call(x, out=None)

	Multiply the input and write to output.

	Parameters:	x : domain element

An element in the operator domain (2-tuple of space
elements) whose elementwise product is calculated

out : range element, optional

Vector to which the result is written

	Returns:	out : range element

Result of the multiplication. If out was provided, the
returned object is a reference to it.

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> x = r3.element([1, 2, 3])

Multiply by vector

>>> op = MultiplyOperator(x)
>>> out = r3.element()
>>> op(x, out)
Rn(3).element([1.0, 4.0, 9.0])

Multiply by scalar

>>> op2 = MultiplyOperator(x, domain=r3.field)
>>> out = r3.element()
>>> op2(3, out)
Rn(3).element([3.0, 6.0, 9.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	MultiplyOperator

MultiplyOperator.derivative

	
MultiplyOperator.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

ResidualOperator

	
class odl.operator.default_ops.ResidualOperator(op, vec)

	Bases: odl.operator.operator.Operator

Operator that calculates the residual op(x) - vec.

ResidualOperator(op, vector)(x) <==> op(x) - vec

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Evaluate the residual at x.

	derivative(point)
	The derivative the residual operator.

	
__init__(op, vec)

	Initialize a new instance.

	Parameters:	op : Operator

Operator to be used in the residual expression. Its
Operator.range must be a LinearSpace.

vec : Operator.range element-like

Vector to be subtracted from the operator result

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ResidualOperator

ResidualOperator.adjoint

	
ResidualOperator.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ResidualOperator

ResidualOperator.domain

	
ResidualOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ResidualOperator

ResidualOperator.inverse

	
ResidualOperator.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ResidualOperator

ResidualOperator.is_functional

	
ResidualOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ResidualOperator

ResidualOperator.is_linear

	
ResidualOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ResidualOperator

ResidualOperator.range

	
ResidualOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ResidualOperator

ResidualOperator.__call__

	
ResidualOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	default_ops

 	ResidualOperator

ResidualOperator._call

	
ResidualOperator._call(x, out=None)

	Evaluate the residual at x.

	Parameters:	x : domain element

Any element of the domain

out : range element

Vector that gets assigned to the constant vector

	Returns:	out : range element

Result of the evaluation. If out was provided, the
returned object is a reference to it.

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> vec = r3.element([1, 2, 3])
>>> op = IdentityOperator(r3)
>>> res = ResidualOperator(op, vec)
>>> x = r3.element([4, 5, 6])
>>> res(x, out=r3.element())
Rn(3).element([3.0, 3.0, 3.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ResidualOperator

ResidualOperator.derivative

	
ResidualOperator.derivative(point)

	The derivative the residual operator.

It is equal to the derivative of the “inner” operator:

ResidualOperator(op, vec).derivative(x) <==> op.derivative(x)

	Parameters:	x : domain element

Any element in the domain where the derivative should be taken

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> op = IdentityOperator(r3)
>>> res = ResidualOperator(op, r3.element([1, 2, 3]))
>>> x = r3.element([4, 5, 6])
>>> res.derivative(x)(x)
Rn(3).element([4.0, 5.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

ScalingOperator

	
class odl.operator.default_ops.ScalingOperator(space, scalar)

	Bases: odl.operator.operator.Operator

Operator of multiplication with a scalar.

Attributes

	adjoint
	Adjoint, given as scaling with the conjugate of the scalar.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the inverse operator.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Scale input and write to output.

	derivative(point)
	Return the operator derivative at point.

	
__init__(space, scalar)

	Initialize a ScalingOperator instance.

	Parameters:	space : LinearSpace

The space of elements which the operator is acting on

scalar : LinearSpace.field element

An element of the field of the space which vectors are
scaled with

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ScalingOperator

ScalingOperator.adjoint

	
ScalingOperator.adjoint

	Adjoint, given as scaling with the conjugate of the scalar.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ScalingOperator

ScalingOperator.domain

	
ScalingOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ScalingOperator

ScalingOperator.inverse

	
ScalingOperator.inverse

	Return the inverse operator.

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> vec = r3.element([1, 2, 3])
>>> op = ScalingOperator(r3, 2.0)
>>> inv = op.inverse
>>> inv(op(vec)) == vec
True
>>> op(inv(vec)) == vec
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ScalingOperator

ScalingOperator.is_functional

	
ScalingOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ScalingOperator

ScalingOperator.is_linear

	
ScalingOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ScalingOperator

ScalingOperator.range

	
ScalingOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ScalingOperator

ScalingOperator.__call__

	
ScalingOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	default_ops

 	ScalingOperator

ScalingOperator._call

	
ScalingOperator._call(x, out=None)

	Scale input and write to output.

	Parameters:	x : domain element

input vector to be scaled

out : range element, optional

Output vector to which the result is written

	Returns:	out : range element

Result of the scaling. If out was provided, the
returned object is a reference to it.

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> vec = r3.element([1, 2, 3])
>>> out = r3.element()
>>> op = ScalingOperator(r3, 2.0)
>>> op(vec, out) # In place, Returns out
Rn(3).element([2.0, 4.0, 6.0])
>>> out
Rn(3).element([2.0, 4.0, 6.0])
>>> op(vec) # Out of place
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ScalingOperator

ScalingOperator.derivative

	
ScalingOperator.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

ZeroOperator

	
class odl.operator.default_ops.ZeroOperator(space)

	Bases: odl.operator.default_ops.ScalingOperator

Operator mapping each element to the zero element.

Attributes

	adjoint
	Adjoint, given as scaling with the conjugate of the scalar.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the inverse operator.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Scale input and write to output.

	derivative(point)
	Return the operator derivative at point.

	
__init__(space)

	Initialize a ZeroOperator instance.

	Parameters:	space : LinearSpace

The space of elements which the operator is acting on

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ZeroOperator

ZeroOperator.adjoint

	
ZeroOperator.adjoint

	Adjoint, given as scaling with the conjugate of the scalar.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ZeroOperator

ZeroOperator.domain

	
ZeroOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ZeroOperator

ZeroOperator.inverse

	
ZeroOperator.inverse

	Return the inverse operator.

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> vec = r3.element([1, 2, 3])
>>> op = ScalingOperator(r3, 2.0)
>>> inv = op.inverse
>>> inv(op(vec)) == vec
True
>>> op(inv(vec)) == vec
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ZeroOperator

ZeroOperator.is_functional

	
ZeroOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ZeroOperator

ZeroOperator.is_linear

	
ZeroOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ZeroOperator

ZeroOperator.range

	
ZeroOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ZeroOperator

ZeroOperator.__call__

	
ZeroOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	default_ops

 	ZeroOperator

ZeroOperator._call

	
ZeroOperator._call(x, out=None)

	Scale input and write to output.

	Parameters:	x : domain element

input vector to be scaled

out : range element, optional

Output vector to which the result is written

	Returns:	out : range element

Result of the scaling. If out was provided, the
returned object is a reference to it.

Examples

>>> from odl import Rn
>>> r3 = Rn(3)
>>> vec = r3.element([1, 2, 3])
>>> out = r3.element()
>>> op = ScalingOperator(r3, 2.0)
>>> op(vec, out) # In place, Returns out
Rn(3).element([2.0, 4.0, 6.0])
>>> out
Rn(3).element([2.0, 4.0, 6.0])
>>> op(vec) # Out of place
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	default_ops

 	ZeroOperator

ZeroOperator.derivative

	
ZeroOperator.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

operator

Abstract mathematical operators.

Classes

	FunctionalLeftVectorMult(op,vector)
	Expression type for the functional left vector multiplication.

	OpDomainError
	Exception for domain errors.

	OpNotImplementedError
	Exception for not implemented errors in LinearSpace‘s.

	OpRangeError
	Exception for domain errors.

	OpTypeError
	Exception for operator type errors.

	Operator(domain,range[,linear])
	Abstract mathematical operator.

	OperatorComp(left,right[,tmp])
	Expression type for the composition of operators.

	OperatorLeftScalarMult(op,scalar)
	Expression type for the operator left scalar multiplication.

	OperatorLeftVectorMult(op,vector)
	Expression type for the operator left vector multiplication.

	OperatorPointwiseProduct(op1,op2)
	Expression type for the pointwise operator mulitplication.

	OperatorRightScalarMult(op,scalar[,tmp])
	Expression type for the operator right scalar multiplication.

	OperatorRightVectorMult(op,vector)
	Expression type for the operator right vector multiplication.

	OperatorSum(op1,op2[,tmp_ran,tmp_dom])
	Expression type for the sum of operators.

Functions

	simple_operator([call,inv,deriv,dom,...])
	Create a simple operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

FunctionalLeftVectorMult

	
class odl.operator.operator.FunctionalLeftVectorMult(op, vector)

	Bases: odl.operator.operator.Operator

Expression type for the functional left vector multiplication.

A functional is a Operator whose Operator.range is
a Field. It is multiplied from left with a vector, resulting in
an operator mapping from the Operator.domain to the vector’s
LinearSpaceVector.space.

FunctionalLeftVectorMult(op, vector)(x) <==> vector * op(x)

Attributes

	adjoint
	The operator adjoint.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Implement self(x[, out]).

	derivative(x)
	Return the derivative at x.

	
__init__(op, vector)

	Initialize a new instance.

	Parameters:	op : Operator

The range of op must be a Field.

vector : LinearSpaceVector

The vector to multiply by. Its space’s
LinearSpace.field must be the same as
op.range

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	FunctionalLeftVectorMult

FunctionalLeftVectorMult.adjoint

	
FunctionalLeftVectorMult.adjoint

	The operator adjoint.

The adjoint of the operator scalar multiplication is the
scalar multiplication of the operator adjoint:

FunctionalLeftVectorMult(op, vector).adjoint ==
OperatorComp(op.adjoint, vector.T)

(x * A)^T = A^T * x^T

	Raises:	OpNotImplementedError

If the underlying operator is non-linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	FunctionalLeftVectorMult

FunctionalLeftVectorMult.domain

	
FunctionalLeftVectorMult.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	FunctionalLeftVectorMult

FunctionalLeftVectorMult.inverse

	
FunctionalLeftVectorMult.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	FunctionalLeftVectorMult

FunctionalLeftVectorMult.is_functional

	
FunctionalLeftVectorMult.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	FunctionalLeftVectorMult

FunctionalLeftVectorMult.is_linear

	
FunctionalLeftVectorMult.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	FunctionalLeftVectorMult

FunctionalLeftVectorMult.range

	
FunctionalLeftVectorMult.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	FunctionalLeftVectorMult

FunctionalLeftVectorMult.__call__

	
FunctionalLeftVectorMult.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	operator

 	FunctionalLeftVectorMult

FunctionalLeftVectorMult._call

	
FunctionalLeftVectorMult._call(x, out=None)

	Implement self(x[, out]).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	FunctionalLeftVectorMult

FunctionalLeftVectorMult.derivative

	
FunctionalLeftVectorMult.derivative(x)

	Return the derivative at x.

Left scalar multiplication and derivative are commutative:

FunctionalLeftVectorMult(op, vector).derivative(x) <==>
FunctionalLeftVectorMult(op.derivative(x), vector)

See also

	FunctionalLeftVectorMult

	the result

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OpDomainError

	
exception odl.operator.operator.OpDomainError

	Exception for domain errors.

Domain errors are raised by Operator subclasses when trying to call
them with input not in the domain (Operator.domain).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OpNotImplementedError

	
exception odl.operator.operator.OpNotImplementedError

	Exception for not implemented errors in LinearSpace‘s.

These are raised when a method in LinearSpace that has not been
defined in a specific space is called.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OpRangeError

	
exception odl.operator.operator.OpRangeError

	Exception for domain errors.

Domain errors are raised by Operator subclasses when the returned
value does not lie in the range (Operator.range).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OpTypeError

	
exception odl.operator.operator.OpTypeError

	Exception for operator type errors.

Domain errors are raised by Operator subclasses when trying to call
them with input not in the domain (Operator.domain) or with the wrong
range (Operator.range).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

Operator

	
class odl.operator.operator.Operator(domain, range, linear=False)

	Bases: object

Abstract mathematical operator.

An operator is a mapping

[image: \mathcal{A}: \mathcal{X} \to \mathcal{Y}]

between sets [image: \mathcal{X}] (domain) and [image: \mathcal{Y}]
(range). The evaluation of [image: \mathcal{A}] at an element
[image: x \in \mathcal{X}] is denoted by [image: \mathcal{A}(x)]
and produces an element in [image: \mathcal{Y}]:

[image: y = \mathcal{A}(x) \in \mathcal{Y}].

Programmatically, these properties are reflected in the Operator
class described in the following.

Abstract attributes and methods

Operator is an abstract class, i.e. it can only be
subclassed, not used directly.

Any subclass of Operator must have the following
attributes:

	domain : Set

	The set of elements this operator can be applied to

	range : Set

	The set this operator maps to

It is highly recommended to call
super().__init__(dom, ran) (Note: add
from builtins import super in Python 2) in the __init__()
method of any subclass, where dom and ran are the arguments
specifying domain and range of the new operator. In that case, the
attributes Operator.domain and Operator.range are automatically
provided by the parent class Operator.

In addition, any subclass must implement the private method
Operator._call(). It signature determines how it is interpreted:

In-place-only evaluation: _call(self, x, out[, **kwargs])

In-place evaluation means that the operator is applied, and the
result is written to an existing element out provided,
i.e.

_call(self, x, out) <==> out <-- operator(x)

Parameters:

	x : Operator.domain element

	An object in the operator domain to which the operator is
applied

	out : Operator.range element

	An object in the operator range to which the result of the
operator evaluation is written.

Returns:

None (return value is ignored)

Out-of-place-only evaluation: _call(self, x[, **kwargs])

Out-of-place evaluation means that the operator is applied,
and the result is written to a new element which is returned.
In this case, a subclass has to implement the method

_call(self, x) <==> operator(x)

Parameters:

	x : Operator.domain element

	An object in the operator domain to which the operator is
applied

Returns:

	out : Operator.range element-like

	An object in the operator range holding the result of the
operator evaluation

Dual-use evaluation: _call(self, x, out=None[, **kwargs])

Evaluate in place if out is given, otherwise out of place.

Parameters:

	x : Operator.domain element

	An object in the operator domain to which the operator is
applied

	out : Operator.range element, optional

	An object in the operator range to which the result of the
operator evaluation is written

Returns:

None (return value is ignored)

Notes

	If Operator._call is implemented in-place-only or
out-of-place-only and the Operator.range is a LinearSpace,
a default implementation of the respective other is provided.

	Operator._call is allowed to have keyword-only arguments (Python
3 only).

	The term “element-like” means that an object must be convertible
to an element by the domain.element() method.

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Implementation of the operator evaluation.

	derivative(point)
	Return the operator derivative at point.

	
__init__(domain, range, linear=False)

	Initialize a new instance.

	Parameters:	domain : Set

The domain of this operator, i.e., the set of elements to
which this operator can be applied

range : Set

The range of this operator, i.e., the set this operator
maps to

linear : bool

If True, the operator is considered as linear. In this
case, domain and range have to be instances of
LinearSpace, or Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	Operator

Operator.adjoint

	
Operator.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	Operator

Operator.domain

	
Operator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	Operator

Operator.inverse

	
Operator.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	Operator

Operator.is_functional

	
Operator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	Operator

Operator.is_linear

	
Operator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	Operator

Operator.range

	
Operator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	Operator

Operator.__call__

	
Operator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	operator

 	Operator

Operator._call

	
Operator._call(x, out=None, **kwargs)

	Implementation of the operator evaluation.

This method is private backend for the evaluation of this
operator. It needs to match certain signature conventions,
and its implementation type is inferred from its signature.

The following signatures are allowed:

	Python 2 and 3:

	
	_call(self, x) –> out-of-place evaluation

	_call(self, vec, out) –> in-place evaluation

	_call(self, x, out=None) –> both

	Python 3 only:

	
	_call(self, x, *, out=None) (out as keyword-only
argument) –> both

For disambiguation, the instance name (the first argument) must
be ‘self’.

The name of the out argument must be ‘out’, the second
argument may have any name.

Additional variable **kwargs and keyword-only arguments
(Python 3 only) are also allowed.

	Parameters:	x : Operator.domain element-like

Element to which the operator is applied

out : Operator.range element, optional

Element to which the result is written

	Returns:	out : Operator.range element-like

Result of the evaluation. If out was provided, the
returned object is a reference to it.

Notes

The public call pattern op() using op.__call__ provides
a default implementation of the underlying in-place or
out-of-place call even if you choose the respective other
pattern.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	Operator

Operator.derivative

	
Operator.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OperatorComp

	
class odl.operator.operator.OperatorComp(left, right, tmp=None)

	Bases: odl.operator.operator.Operator

Expression type for the composition of operators.

OperatorComp(left, right) <==> (x --> left(right(x)))

The composition is only well-defined if
left.domain == right.range.

Attributes

	adjoint
	The operator adjoint.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	The operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Implement self(x[, out]).

	derivative(x)
	Return the operator derivative.

	
__init__(left, right, tmp=None)

	Initialize a new OperatorComp instance.

	Parameters:	left : Operator

The left (“outer”) operator

right : Operator

The right (“inner”) operator. Its range must coincide with the
domain of left.

tmp : element of the range of right, optional

Used to avoid the creation of a temporary when applying the
operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorComp

OperatorComp.adjoint

	
OperatorComp.adjoint

	The operator adjoint.

The adjoint of the operator composition is the composition of
the operator adjoints in reverse order:

OperatorComp(left, right).adjoint ==
OperatorComp(right.adjoint, left.adjoint)

	Raises:	OpNotImplementedError

If any of the underlying operators are non-linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorComp

OperatorComp.domain

	
OperatorComp.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorComp

OperatorComp.inverse

	
OperatorComp.inverse

	The operator inverse.

The inverse of the operator composition is the composition of
the inverses in reverse order:

OperatorComp(left, right).inverse ==
OperatorComp(right.inverse, left.inverse)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorComp

OperatorComp.is_functional

	
OperatorComp.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorComp

OperatorComp.is_linear

	
OperatorComp.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorComp

OperatorComp.range

	
OperatorComp.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorComp

OperatorComp.__call__

	
OperatorComp.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	operator

 	OperatorComp

OperatorComp._call

	
OperatorComp._call(x, out=None)

	Implement self(x[, out]).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorComp

OperatorComp.derivative

	
OperatorComp.derivative(x)

	Return the operator derivative.

The derivative of the operator composition follows the chain
rule:

OperatorComp(left, right).derivative(x) ==
OperatorComp(left.derivative(right(x)), right.derivative(x))

	Parameters:	x : Operator.domain element-like

Evaluation point of the derivative. Needs to be usable as
input for the right operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OperatorLeftScalarMult

	
class odl.operator.operator.OperatorLeftScalarMult(op, scalar)

	Bases: odl.operator.operator.Operator

Expression type for the operator left scalar multiplication.

OperatorLeftScalarMult(op, scalar) <==> (x --> scalar * op(x))

The scalar multiplication is well-defined only if op.range is
a LinearSpace.

Attributes

	adjoint
	The operator adjoint.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	The inverse operator.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Implement self(x[, out]).

	derivative(x)
	Return the derivative at x.

	
__init__(op, scalar)

	Initialize a new OperatorLeftScalarMult instance.

	Parameters:	op : Operator

The range of op must be a LinearSpace
or Field.

scalar : op.range.field element

A real or complex number, depending on the field of
the range.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftScalarMult

OperatorLeftScalarMult.adjoint

	
OperatorLeftScalarMult.adjoint

	The operator adjoint.

The adjoint of the operator scalar multiplication is the
scalar multiplication of the operator adjoint:

OperatorLeftScalarMult(op, scalar).adjoint ==
OperatorLeftScalarMult(op.adjoint, scalar)

	Raises:	OpNotImplementedError

If the underlying operator is non-linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftScalarMult

OperatorLeftScalarMult.domain

	
OperatorLeftScalarMult.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftScalarMult

OperatorLeftScalarMult.inverse

	
OperatorLeftScalarMult.inverse

	The inverse operator.

The inverse of scalar * op is given by
op.inverse * 1/scalar if scalar != 0. If scalar == 0,
the inverse is not defined.

OperatorLeftScalarMult(op, scalar).inverse <==>
OperatorRightScalarMult(op.inverse, 1.0/scalar)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftScalarMult

OperatorLeftScalarMult.is_functional

	
OperatorLeftScalarMult.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftScalarMult

OperatorLeftScalarMult.is_linear

	
OperatorLeftScalarMult.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftScalarMult

OperatorLeftScalarMult.range

	
OperatorLeftScalarMult.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftScalarMult

OperatorLeftScalarMult.__call__

	
OperatorLeftScalarMult.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftScalarMult

OperatorLeftScalarMult._call

	
OperatorLeftScalarMult._call(x, out=None)

	Implement self(x[, out]).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftScalarMult

OperatorLeftScalarMult.derivative

	
OperatorLeftScalarMult.derivative(x)

	Return the derivative at x.

Left scalar multiplication and derivative are commutative:

OperatorLeftScalarMult(op, scalar).derivative(x) <==>
OperatorLeftScalarMult(op.derivative(x), scalar)

	Parameters:	x : Operator.domain element-like

Evaluation point of the derivative

See also

	OperatorLeftScalarMult

	the result

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OperatorLeftVectorMult

	
class odl.operator.operator.OperatorLeftVectorMult(op, vector)

	Bases: odl.operator.operator.Operator

Expression type for the operator left vector multiplication.

OperatorLeftVectorMult(op, vector)(x) <==> vector * op(x)

The scalar multiplication is well-defined only if op.range is
a vector.space.field.

Attributes

	adjoint
	The operator adjoint.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Implement self(x[, out]).

	derivative(x)
	Return the derivative at x.

	
__init__(op, vector)

	Initialize a new OperatorLeftVectorMult instance.

	Parameters:	op : Operator

The range of op must be a LinearSpace.

vector : LinearSpaceVector in op.range

The vector to multiply by

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftVectorMult

OperatorLeftVectorMult.adjoint

	
OperatorLeftVectorMult.adjoint

	The operator adjoint.

The adjoint of the operator vector multiplication is the
vector multiplication of the operator adjoint:

OperatorLeftVectorMult(op, vector).adjoint ==
OperatorRightVectorMult(op.adjoint, vector)

(x * A)^T = A^T * x

	Raises:	OpNotImplementedError

If the underlying operator is non-linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftVectorMult

OperatorLeftVectorMult.domain

	
OperatorLeftVectorMult.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftVectorMult

OperatorLeftVectorMult.inverse

	
OperatorLeftVectorMult.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftVectorMult

OperatorLeftVectorMult.is_functional

	
OperatorLeftVectorMult.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftVectorMult

OperatorLeftVectorMult.is_linear

	
OperatorLeftVectorMult.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftVectorMult

OperatorLeftVectorMult.range

	
OperatorLeftVectorMult.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftVectorMult

OperatorLeftVectorMult.__call__

	
OperatorLeftVectorMult.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftVectorMult

OperatorLeftVectorMult._call

	
OperatorLeftVectorMult._call(x, out=None)

	Implement self(x[, out]).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorLeftVectorMult

OperatorLeftVectorMult.derivative

	
OperatorLeftVectorMult.derivative(x)

	Return the derivative at x.

Left scalar multiplication and derivative are commutative:

OperatorLeftVectorMult(op, vector).derivative(x) <==>
OperatorLeftVectorMult(op.derivative(x), vector)

See also

	OperatorLeftVectorMult

	the result

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OperatorPointwiseProduct

	
class odl.operator.operator.OperatorPointwiseProduct(op1, op2)

	Bases: odl.operator.operator.Operator

Expression type for the pointwise operator mulitplication.

OperatorPointwiseProduct(op1, op2) <==> (x --> op1(x) * op2(x))

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Implement self(x[, out]).

	derivative(point)
	Return the operator derivative at point.

	
__init__(op1, op2)

	Initialize a new instance.

	Parameters:	op1 : Operator

The first factor

op2 : Operator

The second factor. Must have the same domain and range as
op1.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorPointwiseProduct

OperatorPointwiseProduct.adjoint

	
OperatorPointwiseProduct.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorPointwiseProduct

OperatorPointwiseProduct.domain

	
OperatorPointwiseProduct.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorPointwiseProduct

OperatorPointwiseProduct.inverse

	
OperatorPointwiseProduct.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorPointwiseProduct

OperatorPointwiseProduct.is_functional

	
OperatorPointwiseProduct.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorPointwiseProduct

OperatorPointwiseProduct.is_linear

	
OperatorPointwiseProduct.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorPointwiseProduct

OperatorPointwiseProduct.range

	
OperatorPointwiseProduct.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorPointwiseProduct

OperatorPointwiseProduct.__call__

	
OperatorPointwiseProduct.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	operator

 	OperatorPointwiseProduct

OperatorPointwiseProduct._call

	
OperatorPointwiseProduct._call(x, out=None)

	Implement self(x[, out]).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorPointwiseProduct

OperatorPointwiseProduct.derivative

	
OperatorPointwiseProduct.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OperatorRightScalarMult

	
class odl.operator.operator.OperatorRightScalarMult(op, scalar, tmp=None)

	Bases: odl.operator.operator.Operator

Expression type for the operator right scalar multiplication.

OperatorRightScalarMult(op, scalar) <==> (x --> op(scalar * x))

The scalar multiplication is well-defined only if op.domain is
a LinearSpace.

Attributes

	adjoint
	The operator adjoint.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	The inverse operator.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Implement self(x[, out]).

	derivative(x)
	Return the derivative at x.

	
__init__(op, scalar, tmp=None)

	Initialize a new OperatorLeftScalarMult instance.

	Parameters:	op : Operator

The domain of op must be a LinearSpace or
Field.

scalar : op.range.field element

A real or complex number, depending on the field of
the operator domain.

tmp : domain element, optional

Used to avoid the creation of a temporary when applying the
operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightScalarMult

OperatorRightScalarMult.adjoint

	
OperatorRightScalarMult.adjoint

	The operator adjoint.

The adjoint of the operator scalar multiplication is the
scalar multiplication of the operator adjoint:

OperatorLeftScalarMult(op, scalar).adjoint ==
OperatorLeftScalarMult(op.adjoint, scalar)

	Raises:	OpNotImplementedError

If the underlying operator is non-linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightScalarMult

OperatorRightScalarMult.domain

	
OperatorRightScalarMult.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightScalarMult

OperatorRightScalarMult.inverse

	
OperatorRightScalarMult.inverse

	The inverse operator.

The inverse of op * scalar is given by
1/scalar * op.inverse if scalar != 0. If scalar == 0,
the inverse is not defined.

OperatorRightScalarMult(op, scalar).inverse <==>
OperatorLeftScalarMult(op.inverse, 1.0/scalar)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightScalarMult

OperatorRightScalarMult.is_functional

	
OperatorRightScalarMult.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightScalarMult

OperatorRightScalarMult.is_linear

	
OperatorRightScalarMult.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightScalarMult

OperatorRightScalarMult.range

	
OperatorRightScalarMult.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightScalarMult

OperatorRightScalarMult.__call__

	
OperatorRightScalarMult.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightScalarMult

OperatorRightScalarMult._call

	
OperatorRightScalarMult._call(x, out=None)

	Implement self(x[, out]).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightScalarMult

OperatorRightScalarMult.derivative

	
OperatorRightScalarMult.derivative(x)

	Return the derivative at x.

The derivative of the right scalar operator multiplication
follows the chain rule:

OperatorRightScalarMult(op, scalar).derivative(x) <==>
OperatorLeftScalarMult(op.derivative(scalar * x), scalar)

	Parameters:	x : Operator.domain element-like

Evaluation point of the derivative

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OperatorRightVectorMult

	
class odl.operator.operator.OperatorRightVectorMult(op, vector)

	Bases: odl.operator.operator.Operator

Expression type for the operator right vector multiplication.

OperatorRightVectorMult(op, vector)(x) <==> op(vector * x)

The scalar multiplication is well-defined only if
vector in op.domain == True.

Attributes

	adjoint
	The operator adjoint.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Implement self(x[, out]).

	derivative(x)
	Return the derivative at x.

	
__init__(op, vector)

	Initialize a new OperatorRightVectorMult instance.

	Parameters:	op : Operator

The domain of op must be a vector.space.

vector : LinearSpaceVector in op.domain

The vector to multiply by

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightVectorMult

OperatorRightVectorMult.adjoint

	
OperatorRightVectorMult.adjoint

	The operator adjoint.

The adjoint of the operator vector multiplication is the
vector multiplication of the operator adjoint:

OperatorRightVectorMult(op, vector).adjoint ==
OperatorLeftVectorMult(op.adjoint, vector)

(A x)^T = x * A^T

	Raises:	OpNotImplementedError

If the underlying operator is non-linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightVectorMult

OperatorRightVectorMult.domain

	
OperatorRightVectorMult.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightVectorMult

OperatorRightVectorMult.inverse

	
OperatorRightVectorMult.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightVectorMult

OperatorRightVectorMult.is_functional

	
OperatorRightVectorMult.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightVectorMult

OperatorRightVectorMult.is_linear

	
OperatorRightVectorMult.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightVectorMult

OperatorRightVectorMult.range

	
OperatorRightVectorMult.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightVectorMult

OperatorRightVectorMult.__call__

	
OperatorRightVectorMult.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightVectorMult

OperatorRightVectorMult._call

	
OperatorRightVectorMult._call(x, out=None)

	Implement self(x[, out]).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorRightVectorMult

OperatorRightVectorMult.derivative

	
OperatorRightVectorMult.derivative(x)

	Return the derivative at x.

Left vector multiplication and derivative are commutative:

OperatorRightVectorMult(op, vector).derivative(x) <==>
OperatorRightVectorMult(op.derivative(x), vector)

See also

	OperatorRightVectorMult

	the result

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

OperatorSum

	
class odl.operator.operator.OperatorSum(op1, op2, tmp_ran=None, tmp_dom=None)

	Bases: odl.operator.operator.Operator

Expression type for the sum of operators.

OperatorSum(op1, op2) <==> (x --> op1(x) + op2(x))

The sum is only well-defined for Operator instances where
Operator.range is a LinearSpace.

Attributes

	adjoint
	The operator adjoint.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Implement self(x[, out]).

	derivative(x)
	Return the operator derivative at x.

	
__init__(op1, op2, tmp_ran=None, tmp_dom=None)

	Initialize a new instance.

	Parameters:	op1 : Operator

The first summand. Its Operator.range must be a
LinearSpace or Field.

op2 : Operator

The second summand. Must have the same
Operator.domain and Operator.range as
op1.

tmp_ran : Operator.range element, optional

Used to avoid the creation of a temporary when applying the
operator.

tmp_dom : Operator.domain element, optional

Used to avoid the creation of a temporary when applying the
operator adjoint.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorSum

OperatorSum.adjoint

	
OperatorSum.adjoint

	The operator adjoint.

The adjoint of the operator sum is the sum of the operator
adjoints:

OperatorSum(op1, op2).adjoint ==
OperatorSum(op1.adjoint, op2.adjoint)

	Raises:	OpNotImplementedError

If either of the underlying operators are non-linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorSum

OperatorSum.domain

	
OperatorSum.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorSum

OperatorSum.inverse

	
OperatorSum.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorSum

OperatorSum.is_functional

	
OperatorSum.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorSum

OperatorSum.is_linear

	
OperatorSum.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorSum

OperatorSum.range

	
OperatorSum.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorSum

OperatorSum.__call__

	
OperatorSum.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	operator

 	OperatorSum

OperatorSum._call

	
OperatorSum._call(x, out=None)

	Implement self(x[, out]).

Examples

>>> from odl import Rn, IdentityOperator
>>> r3 = Rn(3)
>>> op = IdentityOperator(r3)
>>> x = r3.element([1, 2, 3])
>>> out = r3.element()
>>> OperatorSum(op, op)(x, out) # In place, returns out
Rn(3).element([2.0, 4.0, 6.0])
>>> out
Rn(3).element([2.0, 4.0, 6.0])
>>> OperatorSum(op, op)(x)
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

 	OperatorSum

OperatorSum.derivative

	
OperatorSum.derivative(x)

	Return the operator derivative at x.

The derivative of a sum of two operators is equal to the sum of
the derivatives.

	Parameters:	x : Operator.domain element-like

Evaluation point of the derivative

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	operator

simple_operator

	
odl.operator.operator.simple_operator(call=None, inv=None, deriv=None, dom=None, ran=None, linear=False)

	Create a simple operator.

Mostly intended for simple prototyping rather than final use.

	Parameters:	call : callable

Function with valid call signature, see Operator

inv : Operator, optional

The operator inverse

deriv : Operator, optional

The operator derivative, linear

dom : Set, optional

The domain of the operator
Default: UniversalSpace if linear, else UniversalSet

ran : Set, optional

The range of the operator
Default: UniversalSpace if linear, else UniversalSet

linear : bool, optional

True if the operator is linear
Default: False

	Returns:	op : Operator

An operator with the provided attributes and methods.

Notes

It suffices to supply one of the functions call and apply.
If dom is a LinearSpace, a default implementation of the
respective other method is automatically provided; if not, a
OpNotImplementedError is raised when the other method is called.

Examples

>>> A = simple_operator(lambda x: 3*x)
>>> A(5)
15

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

oputils

Usefull utility functions on discrete spaces (i.e., either Rn/Cn or
discretized function spaces), for example obtaining a matrix representation of
an operator.

Functions

	matrix_representation(op)
	Returns a matrix representation of a linear operator.

	power_method_opnorm(op,niter[,xstart])
	Estimate the operator norm with the power method.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	oputils

matrix_representation

	
odl.operator.oputils.matrix_representation(op)

	Returns a matrix representation of a linear operator.

	Parameters:	op : Operator

The linear operator of which one wants a matrix representation.

	Returns:	matrix : numpy.ndarray

The matrix representation of the operator.

Notes

The algorithm works by letting the operator act on all unit vectors, and
stacking the output as a matrix.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	oputils

power_method_opnorm

	
odl.operator.oputils.power_method_opnorm(op, niter, xstart=None)

	Estimate the operator norm with the power method.

	Parameters:	op : Operator

Operator whose norm is to be estimated. If its Operator.range
range does not coincide with its Operator.domain, an
Operator.adjoint must be defined (which implies that the
operator must be linear).

niter : positive int

Number of iterations to perform

xstart : Operator.domain element, optional

Starting point of the iteration. By default, the one
element of the Operator.domain is used.

	Returns:	est_norm : float

The estimated operator norm

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

pspace_ops

Default operators defined on any ProductSpace.

Classes

	BroadcastOperator(*operators)
	Broadcast argument to set of operators.

	ComponentProjection(space,index)
	Projection onto the subspace identified by an index.

	ComponentProjectionAdjoint(space,index)
	Adjoint operator to ComponentProjection.

	ProductSpaceOperator(operators[,dom,ran])
	A “matrix of operators” on product spaces.

	ReductionOperator(*operators)
	Reduce argument over set of operators.

Functions

	diagonal_operator(operators[,dom,ran])
	Broadcast argument to set of operators.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

BroadcastOperator

	
class odl.operator.pspace_ops.BroadcastOperator(*operators)

	Bases: odl.operator.operator.Operator

Broadcast argument to set of operators.

An argument is broadcast by evaluating several operators in the same
point

BroadcastOperator(op1, op2)(x) = [op1(x), op2(x)]

It is implemented using a ProductSpaceOperator.

Attributes

	adjoint
	Adjoint of the broadcast operator.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	operators
	A tuple of sub-operators

	prod_op
	The prod-op implementation

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Apply operators to x.

	derivative(x)
	Derivative of the broadcast operator.

	
__init__(*operators)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator.adjoint

	
BroadcastOperator.adjoint

	Adjoint of the broadcast operator.

	Returns:	adjoint : linear BroadcastOperator

The adjoint

Examples

>>> import odl
>>> I = odl.IdentityOperator(odl.Rn(3))
>>> op = BroadcastOperator(I, 2 * I)
>>> op.adjoint([[1, 2, 3], [2, 3, 4]])
Rn(3).element([5.0, 8.0, 11.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator.domain

	
BroadcastOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator.inverse

	
BroadcastOperator.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator.is_functional

	
BroadcastOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator.is_linear

	
BroadcastOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator.operators

	
BroadcastOperator.operators

	A tuple of sub-operators

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator.prod_op

	
BroadcastOperator.prod_op

	The prod-op implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator.range

	
BroadcastOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator.__call__

	
BroadcastOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator._call

	
BroadcastOperator._call(x, out=None)

	Apply operators to x.

	Parameters:	x : domain element

Input vector to be evaluated by operators

out : range element, optional

output vector to write result to

	Returns:	out : range element

Values of operators evaluated in point

Examples

>>> import odl
>>> I = odl.IdentityOperator(odl.Rn(3))
>>> op = BroadcastOperator(I, 2 * I)
>>> x = [1, 2, 3]
>>> op(x)
ProductSpace(Rn(3), 2).element([
 [1.0, 2.0, 3.0],
 [2.0, 4.0, 6.0]
])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	BroadcastOperator

BroadcastOperator.derivative

	
BroadcastOperator.derivative(x)

	Derivative of the broadcast operator.

	Parameters:	x : domain element

The point to take the derivative in

	Returns:	adjoint : linear BroadcastOperator

The derivative

Examples

Example with affine operator

>>> import odl
>>> I = odl.IdentityOperator(odl.Rn(3))
>>> residual_op = odl.ResidualOperator(I, I.domain.element([1, 1, 1]))
>>> op = BroadcastOperator(residual_op, 2 * residual_op)

Calling operator gives offset by [1, 1, 1]

>>> x = [1, 2, 3]
>>> op(x)
ProductSpace(Rn(3), 2).element([
 [0.0, 1.0, 2.0],
 [0.0, 2.0, 4.0]
])

Derivative of affine operator does not have this offset

>>> op.derivative(x)(x)
ProductSpace(Rn(3), 2).element([
 [1.0, 2.0, 3.0],
 [2.0, 4.0, 6.0]
])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

ComponentProjection

	
class odl.operator.pspace_ops.ComponentProjection(space, index)

	Bases: odl.operator.operator.Operator

Projection onto the subspace identified by an index.

For a product space [image: \mathcal{X} = \mathcal{X}_1 \times \dots \times \mathcal{X}_n], the component projection

[image: \mathcal{P}_i: \mathcal{X} \to \mathcal{X}_i]

is given by [image: \mathcal{P}_i(x) = x_i] for an element
[image: x = (x_1, \dots, x_n) \in \mathcal{X}].

More generally, for an index set [image: I \subset \{1, \dots, n\}],
the projection operator [image: \mathcal{P}_I] is defined by
[image: \mathcal{P}_I(x) = (x_i)_{i \in I}].

Note that this is a special case of a product space operator where
the “operator matrix” has only one row and contains only
identity operators.

Attributes

	adjoint
	Return the adjoint operator.

	domain
	Set of objects on which this operator can be evaluated.

	index
	Index of the subspace.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Project x onto subspace.

	derivative(point)
	Return the operator derivative at point.

	
__init__(space, index)

	

	Parameters:	space : ProductSpace

The space to project from

index : int, slice, or iterable [int]

The indices defining the subspace. If index is not
and int, the Operator.range of this
operator is also a ProductSpace.

Examples

>>> import odl
>>> r1 = odl.Rn(1)
>>> r2 = odl.Rn(2)
>>> r3 = odl.Rn(3)
>>> X = odl.ProductSpace(r1, r2, r3)

Projection on n-th component

>>> proj = odl.ComponentProjection(X, 0)
>>> proj.range
Rn(1)

Projection on sub-space

>>> proj = odl.ComponentProjection(X, [0, 2])
>>> proj.range
ProductSpace(Rn(1), Rn(3))

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjection

ComponentProjection.adjoint

	
ComponentProjection.adjoint

	Return the adjoint operator.

The adjoint is given by extending along ComponentProjection.index,
and setting zero along the others.

See also

ComponentProjectionAdjoint

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjection

ComponentProjection.domain

	
ComponentProjection.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjection

ComponentProjection.index

	
ComponentProjection.index

	Index of the subspace.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjection

ComponentProjection.inverse

	
ComponentProjection.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjection

ComponentProjection.is_functional

	
ComponentProjection.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjection

ComponentProjection.is_linear

	
ComponentProjection.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjection

ComponentProjection.range

	
ComponentProjection.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjection

ComponentProjection.__call__

	
ComponentProjection.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjection

ComponentProjection._call

	
ComponentProjection._call(x, out=None)

	Project x onto subspace.

	Parameters:	x : domain element

input vector to be projected

out : range element, optional

output vector to write result to

	Returns:	out : range element

Projection of x onto subspace. If out was provided, the
returned object is a reference to it.

Examples

>>> import odl
>>> r1 = odl.Rn(1)
>>> r2 = odl.Rn(2)
>>> r3 = odl.Rn(3)
>>> X = odl.ProductSpace(r1, r2, r3)
>>> x = X.element([[1], [2, 3], [4, 5, 6]])

Projection on n-th component

>>> proj = odl.ComponentProjection(X, 0)
>>> proj(x)
Rn(1).element([1.0])

Projection on sub-space

>>> proj = odl.ComponentProjection(X, [0, 2])
>>> proj(x)
ProductSpace(Rn(1), Rn(3)).element([
 [1.0],
 [4.0, 5.0, 6.0]
])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjection

ComponentProjection.derivative

	
ComponentProjection.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

ComponentProjectionAdjoint

	
class odl.operator.pspace_ops.ComponentProjectionAdjoint(space, index)

	Bases: odl.operator.operator.Operator

Adjoint operator to ComponentProjection.

As a special case of the adjoint of a ProductSpaceOperator,
this operator is given as a column vector of identity operators
and zero operators, with the identities placed in the positions
defined by ComponentProjectionAdjoint.index.

In weighted product spaces, the adjoint needs to take the
weightings into account. This is currently not supported.

Attributes

	adjoint
	The adjoint operator.

	domain
	Set of objects on which this operator can be evaluated.

	index
	Index of the subspace.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Extend x from the subspace.

	derivative(point)
	Return the operator derivative at point.

	
__init__(space, index)

	Initialize a new instance

	Parameters:	space : ProductSpace

The space to project to

index : int, slice, or iterable [int]

The indexes to project from

Examples

>>> import odl
>>> r1 = odl.Rn(1)
>>> r2 = odl.Rn(2)
>>> r3 = odl.Rn(3)
>>> X = odl.ProductSpace(r1, r2, r3)

Projection on n-th component

>>> proj = odl.ComponentProjectionAdjoint(X, 0)
>>> proj.domain
Rn(1)

Projection on sub-space

>>> proj = odl.ComponentProjectionAdjoint(X, [0, 2])
>>> proj.domain
ProductSpace(Rn(1), Rn(3))

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjectionAdjoint

ComponentProjectionAdjoint.adjoint

	
ComponentProjectionAdjoint.adjoint

	The adjoint operator.

The adjoint is given by the ComponentProjection
related to this operator’s index.

See also

ComponentProjection

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjectionAdjoint

ComponentProjectionAdjoint.domain

	
ComponentProjectionAdjoint.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjectionAdjoint

ComponentProjectionAdjoint.index

	
ComponentProjectionAdjoint.index

	Index of the subspace.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjectionAdjoint

ComponentProjectionAdjoint.inverse

	
ComponentProjectionAdjoint.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjectionAdjoint

ComponentProjectionAdjoint.is_functional

	
ComponentProjectionAdjoint.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjectionAdjoint

ComponentProjectionAdjoint.is_linear

	
ComponentProjectionAdjoint.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjectionAdjoint

ComponentProjectionAdjoint.range

	
ComponentProjectionAdjoint.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjectionAdjoint

ComponentProjectionAdjoint.__call__

	
ComponentProjectionAdjoint.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjectionAdjoint

ComponentProjectionAdjoint._call

	
ComponentProjectionAdjoint._call(x, out=None)

	Extend x from the subspace.

	Parameters:	x : domain element

Input vector to be extended

out : range element, optional

output vector to write result to

	Returns:	out : range element

Extension of x to superspace. If out was provided, the
returned object is a reference to it.

Examples

>>> import odl
>>> r1 = odl.Rn(1)
>>> r2 = odl.Rn(2)
>>> r3 = odl.Rn(3)
>>> X = odl.ProductSpace(r1, r2, r3)
>>> x = X.element([[1], [2, 3], [4, 5, 6]])

Projection on n-th component

>>> proj = odl.ComponentProjectionAdjoint(X, 0)
>>> proj(x[0])
ProductSpace(Rn(1), Rn(2), Rn(3)).element([
 [1.0],
 [0.0, 0.0],
 [0.0, 0.0, 0.0]
])

Projection on sub-space

>>> proj = odl.ComponentProjectionAdjoint(X, [0, 2])
>>> proj(x[0, 2])
ProductSpace(Rn(1), Rn(2), Rn(3)).element([
 [1.0],
 [0.0, 0.0],
 [4.0, 5.0, 6.0]
])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ComponentProjectionAdjoint

ComponentProjectionAdjoint.derivative

	
ComponentProjectionAdjoint.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

ProductSpaceOperator

	
class odl.operator.pspace_ops.ProductSpaceOperator(operators, dom=None, ran=None)

	Bases: odl.operator.operator.Operator

A “matrix of operators” on product spaces.

This is intended for the case where an operator can be decomposed
as a linear combination of “sub-operators”, e.g.

[image: \left(\begin{array}{ccc} A & B & 0 \\ 0 & C & 0 \\ 0 & 0 & D \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} A(x) + B(y) \\ C(y) \\ D(z) \end{array}\right)]

Mathematically, a ProductSpaceOperator is an operator

[image: \mathcal{A}: \mathcal{X} \to \mathcal{Y}]

between product spaces
[image: \mathcal{X}=\mathcal{X}_1 \times\dots\times \mathcal{X}_m]
and
[image: \mathcal{Y}=\mathcal{Y}_1 \times\dots\times \mathcal{Y}_n]
which can be written in the form

[image: \mathcal{A} = (\mathcal{A}_{ij})_{i,j}, \quad i = 1, \dots, n, \ j = 1, \dots, m]

with component operators
[image: \mathcal{A}_{ij}: \mathcal{X}_j \to \mathcal{Y}_i].

Its action on a vector [image: x = (x_1, \dots, x_m)] is defined as
the matrix multiplication

[image: [\mathcal{A}(x)]_i = \sum_{j=1}^m \mathcal{A}_{ij}(x_j)].

Notes

In many cases it is of interest to have an operator from a ProductSpace
to any LinearSpace. It that case this operator can be used with a slight
modification, simply run

prod_op = ProductSpaceOperator(prod_space, ProductSpace(linear_space))

The same can be done for operators LinearSpace -> ProductSpace

prod_op = ProductSpaceOperator(ProductSpace(linear_space), prod_space)

Attributes

	adjoint
	Adjoint of the product space operator.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Call the ProductSpace operators.

	derivative(x)
	Derivative of the product space operator.

	
__init__(operators, dom=None, ran=None)

	Initialize a new instance.

	Parameters:	operators : array-like

An array of Operator‘s

dom : ProductSpace, optional

Domain of the operator. If not provided, it is tried to be
inferred from the operators. This requires each column
to contain at least one operator.

ran : ProductSpace, optional

Range of the operator. If not provided, it is tried to be
inferred from the operators. This requires each row
to contain at least one operator.

Examples

>>> import odl
>>> r3 = odl.Rn(3)
>>> X = odl.ProductSpace(r3, r3)
>>> I = odl.IdentityOperator(r3)

Sum of elements

>>> prod_op = ProductSpaceOperator([I, I])

Diagonal operator, 0 or None means ignore, or the implicit zero op.

>>> prod_op = ProductSpaceOperator([[I, 0], [None, I]])

Complicated combinations also possible

>>> prod_op = ProductSpaceOperator([[I, I], [I, 0]])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ProductSpaceOperator

ProductSpaceOperator.adjoint

	
ProductSpaceOperator.adjoint

	Adjoint of the product space operator.

The adjoint is given by taking the transpose of the matrix
and the adjoint of each component operator.

In weighted product spaces, the adjoint needs to take the
weightings into account. This is currently not supported.

	Returns:	adjoint : ProductSpaceOperator

The adjoint

Examples

>>> import odl
>>> r3 = odl.Rn(3)
>>> X = odl.ProductSpace(r3, r3)
>>> I = odl.IdentityOperator(r3)
>>> x = X.element([[1, 2, 3], [4, 5, 6]])

Matrix is transposed:

>>> prod_op = ProductSpaceOperator([[0, I], [0, 0]],
... dom=X, ran=X)
>>> prod_op(x)
ProductSpace(Rn(3), 2).element([
 [4.0, 5.0, 6.0],
 [0.0, 0.0, 0.0]
])
>>> prod_op.adjoint(x)
ProductSpace(Rn(3), 2).element([
 [0.0, 0.0, 0.0],
 [1.0, 2.0, 3.0]
])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ProductSpaceOperator

ProductSpaceOperator.domain

	
ProductSpaceOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ProductSpaceOperator

ProductSpaceOperator.inverse

	
ProductSpaceOperator.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ProductSpaceOperator

ProductSpaceOperator.is_functional

	
ProductSpaceOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ProductSpaceOperator

ProductSpaceOperator.is_linear

	
ProductSpaceOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ProductSpaceOperator

ProductSpaceOperator.range

	
ProductSpaceOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ProductSpaceOperator

ProductSpaceOperator.__call__

	
ProductSpaceOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	pspace_ops

 	ProductSpaceOperator

ProductSpaceOperator._call

	
ProductSpaceOperator._call(x, out=None)

	Call the ProductSpace operators.

	Parameters:	x : domain element

input vector to be evaluated

out : range element, optional

output vector to write result to

	Returns:	out : range element

Result of the evaluation. If out was provided, the
returned object is a reference to it.

Examples

>>> import odl
>>> r3 = odl.Rn(3)
>>> X = odl.ProductSpace(r3, r3)
>>> I = odl.IdentityOperator(r3)
>>> x = X.element([[1, 2, 3], [4, 5, 6]])

Sum of elements:

>>> prod_op = ProductSpaceOperator([I, I])
>>> prod_op(x)
ProductSpace(Rn(3), 1).element([
 [5.0, 7.0, 9.0]
])

Diagonal operator – 0 or None means ignore, or the implicit
zero operator:

>>> prod_op = ProductSpaceOperator([[I, 0], [0, I]])
>>> prod_op(x)
ProductSpace(Rn(3), 2).element([
 [1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0]
])

Complicated combinations:

>>> prod_op = ProductSpaceOperator([[I, I], [I, 0]])
>>> prod_op(x)
ProductSpace(Rn(3), 2).element([
 [5.0, 7.0, 9.0],
 [1.0, 2.0, 3.0]
])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ProductSpaceOperator

ProductSpaceOperator.derivative

	
ProductSpaceOperator.derivative(x)

	Derivative of the product space operator.

	Parameters:	x : domain element

The point to take the derivative in

	Returns:	adjoint : linear`ProductSpaceOperator`

The derivative

Examples

>>> import odl
>>> r3 = odl.Rn(3)
>>> X = odl.ProductSpace(r3, r3)
>>> I = odl.IdentityOperator(r3)
>>> x = X.element([[1, 2, 3], [4, 5, 6]])

Example with linear operator (derivative is itself)

>>> prod_op = ProductSpaceOperator([[0, I], [0, 0]],
... dom=X, ran=X)
>>> prod_op(x)
ProductSpace(Rn(3), 2).element([
 [4.0, 5.0, 6.0],
 [0.0, 0.0, 0.0]
])
>>> prod_op.derivative(x)(x)
ProductSpace(Rn(3), 2).element([
 [4.0, 5.0, 6.0],
 [0.0, 0.0, 0.0]
])

Example with affine operator

>>> residual_op = odl.ResidualOperator(I, r3.element([1, 1, 1]))
>>> op = ProductSpaceOperator([[0, residual_op], [0, 0]],
... dom=X, ran=X)

Calling operator gives offset by [1, 1, 1]

>>> op(x)
ProductSpace(Rn(3), 2).element([
 [3.0, 4.0, 5.0],
 [0.0, 0.0, 0.0]
])

Derivative of affine operator does not have this offset

>>> op.derivative(x)(x)
ProductSpace(Rn(3), 2).element([
 [4.0, 5.0, 6.0],
 [0.0, 0.0, 0.0]
])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

ReductionOperator

	
class odl.operator.pspace_ops.ReductionOperator(*operators)

	Bases: odl.operator.operator.Operator

Reduce argument over set of operators.

An argument is reduced by evaluating several operators and summing the
result

ReductionOperator(op1, op2)(x) = op1(x[0]) + op2(x[1])

It is implemented using a ProductSpaceOperator.

Attributes

	adjoint
	Adjoint of the reduction operator.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	operators
	A tuple of sub-operators

	prod_op
	The prod-op implementation

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Apply operators to x and sum.

	derivative(x)
	Derivative of the reduction operator.

	
__init__(*operators)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator.adjoint

	
ReductionOperator.adjoint

	Adjoint of the reduction operator.

	Returns:	adjoint : linear BroadcastOperator

The adjoint

Examples

>>> import odl
>>> I = odl.IdentityOperator(odl.Rn(3))
>>> op = ReductionOperator(I, 2 * I)
>>> op.adjoint([1, 2, 3])
ProductSpace(Rn(3), 2).element([
 [1.0, 2.0, 3.0],
 [2.0, 4.0, 6.0]
])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator.domain

	
ReductionOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator.inverse

	
ReductionOperator.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator.is_functional

	
ReductionOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator.is_linear

	
ReductionOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator.operators

	
ReductionOperator.operators

	A tuple of sub-operators

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator.prod_op

	
ReductionOperator.prod_op

	The prod-op implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator.range

	
ReductionOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator.__call__

	
ReductionOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator._call

	
ReductionOperator._call(x, out=None)

	Apply operators to x and sum.

	Parameters:	x : domain element

Input vector to be evaluated by operators

out : range element, optional

output vector to write result to

	Returns:	out : range element

Sum of operators evaluated in point

Examples

>>> import odl
>>> I = odl.IdentityOperator(odl.Rn(3))
>>> op = ReductionOperator(I, 2 * I)
>>> op([[1.0, 2.0, 3.0], [4.0, 6.0, 8.0]])
Rn(3).element([9.0, 14.0, 19.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

 	ReductionOperator

ReductionOperator.derivative

	
ReductionOperator.derivative(x)

	Derivative of the reduction operator.

	Parameters:	x : domain element

The point to take the derivative in

	Returns:	adjoint : linear BroadcastOperator

The derivative

Examples

>>> import odl
>>> r3 = odl.Rn(3)
>>> I = odl.IdentityOperator(r3)
>>> x = r3.element([1.0, 2.0, 3.0])
>>> y = r3.element([4.0, 6.0, 8.0])

Example with linear operator (derivative is itself)

>>> op = ReductionOperator(I, 2 * I)
>>> op([x, y])
Rn(3).element([9.0, 14.0, 19.0])
>>> op.derivative([x, y])([x, y])
Rn(3).element([9.0, 14.0, 19.0])

Example with affine operator

>>> residual_op = odl.ResidualOperator(I, r3.element([1, 1, 1]))
>>> op = ReductionOperator(residual_op, 2 * residual_op)

Calling operator gives offset by [3, 3, 3]

>>> op([x, y])
Rn(3).element([6.0, 11.0, 16.0])

Derivative of affine operator does not have this offset

>>> op.derivative([x, y])([x, y])
Rn(3).element([9.0, 14.0, 19.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	operator

 	pspace_ops

diagonal_operator

	
odl.operator.pspace_ops.diagonal_operator(operators, dom=None, ran=None)

	Broadcast argument to set of operators.

	Parameters:	operators : array-like

An array of Operator‘s

dom : ProductSpace, optional

Domain of the operator. If not provided, it is tried to be
inferred from the operators. This requires each column
to contain at least one operator.

ran : ProductSpace, optional

Range of the operator. If not provided, it is tried to be
inferred from the operators. This requires each row
to contain at least one operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

set

Core Spaces and set support.

Modules

	domain
	IntervalProd

	Cuboid

	Interval

	Rectangle

	pspace
	ProductSpace

	ProductSpaceVector

	sets
	CartesianProduct

	ComplexNumbers

	EmptySet

	Field

	Integers

	RealNumbers

	Set

	Strings

	UniversalSet

	space
	LinearSpace

	LinearSpaceNotImplementedError

	LinearSpaceTypeError

	LinearSpaceVector

	UniversalSpace

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

domain

Typical domains for inverse problems.

Classes

	IntervalProd(begin,end)
	An n-dimensional rectangular box.

Functions

	Cuboid(begin,end)
	Three-dimensional interval product.

	Interval(begin,end)
	One-dimensional interval product.

	Rectangle(begin,end)
	Two-dimensional interval product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

IntervalProd

	
class odl.set.domain.IntervalProd(begin, end)

	Bases: odl.set.sets.Set

An n-dimensional rectangular box.

An interval product is a Cartesian product of n intervals, i.e. an
n-dimensional rectangular box aligned with the coordinate axes
as a subset of [image: R^n].

IntervalProd objects are immutable, all methods involving them return
a new IntervalProd.

Attributes

	area
	The length of this interval.

	begin
	The left interval boundary/boundaries.

	end
	The right interval boundary/boundaries.

	length
	The length of this interval.

	midpoint
	The midpoint of the interval product.

	ndim
	The number of intervals in the product.

	true_ndim
	The number of non-degenerate (zero-length) intervals.

	volume
	The ‘dim’-dimensional volume of this interval product.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	__getitem__(indices)
	Return self[indices]

	append(other)
	Insert at the end.

	approx_contains(point,tol)
	Test if a point is contained.

	approx_equals(other,tol)
	Test if other is equal to this set up to tol.

	collapse(indices,values)
	Partly collapse the interval product to single values.

	contains_all(other)
	Test if all points defined by other are contained.

	contains_set(other[,tol])
	Test if another set is contained.

	corners([order])
	The corner points in a single array.

	dist(point[,ord])
	Calculate the distance to a point.

	element([inp])
	Create element in this set.

	extent()
	The interval length per axis.

	insert(index,other)
	Return a copy with other inserted before index.

	max()
	The maximum value in this interval product

	measure([ndim])
	The (Lebesgue) measure of this interval product.

	min()
	The minimum value in this interval product

	squeeze()
	Remove the degenerate dimensions.

	
__init__(begin, end)

	Initialize a new instance.

	Parameters:	begin : array-like or float

The lower ends of the intervals in the product

end : array-like or float

The upper ends of the intervals in the product

Examples

>>> b, e = [-1, 2.5, 70, 80], [-0.5, 10, 75, 90]
>>> rbox = IntervalProd(b, e)
>>> rbox
IntervalProd([-1.0, 2.5, 70.0, 80.0], [-0.5, 10.0, 75.0, 90.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.area

	
IntervalProd.area

	The length of this interval.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.begin

	
IntervalProd.begin

	The left interval boundary/boundaries.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.end

	
IntervalProd.end

	The right interval boundary/boundaries.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.length

	
IntervalProd.length

	The length of this interval.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.midpoint

	
IntervalProd.midpoint

	The midpoint of the interval product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.ndim

	
IntervalProd.ndim

	The number of intervals in the product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.true_ndim

	
IntervalProd.true_ndim

	The number of non-degenerate (zero-length) intervals.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.volume

	
IntervalProd.volume

	The ‘dim’-dimensional volume of this interval product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.__contains__

	
IntervalProd.__contains__(other)

	Return other in self.

	Parameters:	other

Arbitrary object to be tested.

	Returns:	containts : bool

True if other is inside self.

Examples

>>> interv = IntervalProd(0, 1)
>>> 0.5 in interv
True
>>> 2 in interv
False
>>> 'string' in interv
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.__eq__

	
IntervalProd.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.__getitem__

	
IntervalProd.__getitem__(indices)

	Return self[indices]

	Parameters:	indices : numpy style index

Any of: int, slice, list of ints

	Returns:	subinterval : IntervalProd

Interval given by the indices

Examples

>>> rbox = IntervalProd([-1, 2, 0], [-0.5, 3, 0.5])

By integer

>>> rbox[0]
Interval(-1.0, -0.5)

By slice

>>> rbox[:]
Cuboid([-1.0, 2.0, 0.0], [-0.5, 3.0, 0.5])
>>> rbox[::2]
Rectangle([-1.0, 0.0], [-0.5, 0.5])

By list of ints

>>> rbox[[0, 1]]
Rectangle([-1.0, 2.0], [-0.5, 3.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.append

	
IntervalProd.append(other)

	Insert at the end.

	Parameters:	other : IntervalProd, float or array-like

The set to be inserted. A float or array a is
treated as an IntervalProd(a, a).

See also

insert

Examples

>>> rbox = IntervalProd([-1, 2], [-0.5, 3])
>>> rbox.append(Interval(-1.0, 0.0))
Cuboid([-1.0, 2.0, -1.0], [-0.5, 3.0, 0.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.approx_contains

	
IntervalProd.approx_contains(point, tol)

	Test if a point is contained.

	Parameters:	point : array-like or float

The point to be tested. Its length must be equal
to the set’s dimension. In the 1d case, ‘point’
can be given as a float.

tol : float

The maximum allowed distance in ‘inf’-norm between the
point and the set.
Default: 0.0

Examples

>>> from math import sqrt
>>> b, e = [-1, 0, 2], [-0.5, 0, 3]
>>> rbox = IntervalProd(b, e)
>>> # Numerical error
>>> rbox.approx_contains([-1 + sqrt(0.5)**2, 0., 2.9], tol=0)
False
>>> rbox.approx_contains([-1 + sqrt(0.5)**2, 0., 2.9], tol=1e-9)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.approx_equals

	
IntervalProd.approx_equals(other, tol)

	Test if other is equal to this set up to tol.

	Parameters:	other : object

The object to be tested

tol : float

The maximum allowed difference in ‘inf’-norm between the
interval endpoints.

Examples

>>> from math import sqrt
>>> rbox1 = IntervalProd(0, 0.5)
>>> rbox2 = IntervalProd(0, sqrt(0.5)**2)
>>> rbox1.approx_equals(rbox2, tol=0) # Num error
False
>>> rbox1.approx_equals(rbox2, tol=1e-15)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.collapse

	
IntervalProd.collapse(indices, values)

	Partly collapse the interval product to single values.

Note that no changes are made in-place.

	Parameters:	indices : int or tuple of int

The indices of the dimensions along which to collapse

values : array-like or float

The values to which to collapse. Must have the same
length as indices. Values must lie within the interval
boundaries.

	Returns:	collapsed : IntervalProd

The collapsed set

Examples

>>> b, e = [-1, 0, 2], [-0.5, 1, 3]
>>> rbox = IntervalProd(b, e)
>>> rbox.collapse(1, 0)
Cuboid([-1.0, 0.0, 2.0], [-0.5, 0.0, 3.0])
>>> rbox.collapse([1, 2], [0, 2.5])
Cuboid([-1.0, 0.0, 2.5], [-0.5, 0.0, 2.5])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.contains_all

	
IntervalProd.contains_all(other)

	Test if all points defined by other are contained.

	Parameters:	other :

Can be a single point, a (d, N) array where d is the
number of dimensions or a length-d meshgrid tuple

	Returns:	contains : bool

True if all points are contained, False otherwise

Examples

>>> import odl
>>> b, e = [-1, 0, 2], [-0.5, 0, 3]
>>> rbox = IntervalProd(b, e)

rrays are expected in (ndim, npoints) shape

>>> arr = np.array([[-1, 0, 2], # defining one point at a time
... [-0.5, 0, 2]])
>>> rbox.contains_all(arr.T)
True

Implicit meshgrids defined by coordinate vectors

>>> from odl.discr.grid import sparse_meshgrid
>>> vec1 = (-1, -0.9, -0.7)
>>> vec2 = (0, 0, 0)
>>> vec3 = (2.5, 2.75, 3)
>>> mg = sparse_meshgrid(vec1, vec2, vec3)
>>> rbox.contains_all(mg)
True

Also works with any iterable

>>> rbox.contains_all([[-1, -0.5], # define points by axis
... [0, 0],
... [2, 2]])
True

And with grids

>>> agrid = odl.uniform_sampling(rbox.begin, rbox.end, [3, 1, 3])
>>> rbox.contains_all(agrid)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.contains_set

	
IntervalProd.contains_set(other, tol=0.0)

	Test if another set is contained.

	Parameters:	other : Set

The set to be tested. It must implement a min() and a
max() method, otherwise a TypeError is raised.

tol : float, optional

The maximum allowed distance in ‘inf’-norm between the
other set and this interval product.
Default: 0.0

Examples

>>> b1, e1 = [-1, 0, 2], [-0.5, 0, 3]
>>> rbox1 = IntervalProd(b1, e1)
>>> b2, e2 = [-0.6, 0, 2.1], [-0.5, 0, 2.5]
>>> rbox2 = IntervalProd(b2, e2)
>>> rbox1.contains_set(rbox2)
True
>>> rbox2.contains_set(rbox1)
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.corners

	
IntervalProd.corners(order='C')

	The corner points in a single array.

	Parameters:	order : {‘C’, ‘F’}

The ordering of the axes in which the corners appear in
the output. ‘C’ means that the first axis varies slowest
and the last one fastest, vice versa in ‘F’ ordering.

	Returns:	corners : numpy.ndarray

The size of the array is 2^m * ndim, where m
is the number of non-degenerate axes, i.e. the corners are
stored as rows.

Examples

>>> rbox = IntervalProd([-1, 2, 0], [-0.5, 3, 0.5])
>>> rbox.corners()
array([[-1. , 2. , 0.],
 [-1. , 2. , 0.5],
 [-1. , 3. , 0.],
 [-1. , 3. , 0.5],
 [-0.5, 2. , 0.],
 [-0.5, 2. , 0.5],
 [-0.5, 3. , 0.],
 [-0.5, 3. , 0.5]])
>>> rbox.corners(order='F')
array([[-1. , 2. , 0.],
 [-0.5, 2. , 0.],
 [-1. , 3. , 0.],
 [-0.5, 3. , 0.],
 [-1. , 2. , 0.5],
 [-0.5, 2. , 0.5],
 [-1. , 3. , 0.5],
 [-0.5, 3. , 0.5]])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.dist

	
IntervalProd.dist(point, ord=2.0)

	Calculate the distance to a point.

	Parameters:	point : array-like or float

The point. Its length must be equal to the set’s
dimension. Can be a float in the 1d case.

ord : non-zero int or float(‘inf’), optional

The order of the norm (see numpy.linalg.norm).
Default: 2.0

	Returns:	dist : float

Distance to the interior of the IntervalProd.
Points strictly inside have distance 0.0, points with NaN
have distance infinity.

Examples

>>> b, e = [-1, 0, 2], [-0.5, 0, 3]
>>> rbox = IntervalProd(b, e)
>>> rbox.dist([-5, 3, 2])
5.0
>>> rbox.dist([-5, 3, 2], ord=float('inf'))
4.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.element

	
IntervalProd.element(inp=None)

	Create element in this set.

	Parameters:	inp : float or array-like, optional

Point to be cast to an element in self

	Returns:	element

Returns inp if given, else self.midpoint

	Raises:	TypeError

If inp is not a valid element.

Examples

>>> interv = IntervalProd(0, 1)
>>> interv.element(0.5)
0.5

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.extent

	
IntervalProd.extent()

	The interval length per axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.insert

	
IntervalProd.insert(index, other)

	Return a copy with other inserted before index.

The given interval product (ndim=m) is inserted into the
current one (ndim=n) before the given index, resulting in a
new interval product with n+m dimensions.

	Parameters:	index : int

Index of the dimension before which other is to
be inserted. Must fulfill -ndim <= index <= ndim.
Negative indices count backwards from self.ndim.

other : IntervalProd

Interval product to be inserted

	Returns:	newintvp : IntervalProd

Interval product with other inserted

Examples

>>> rbox = IntervalProd([-1, 2], [-0.5, 3])
>>> rbox2 = IntervalProd([0, 0], [1, 0])
>>> rbox.insert(1, rbox2)
IntervalProd([-1.0, 0.0, 0.0, 2.0], [-0.5, 1.0, 0.0, 3.0])
>>> rbox.insert(-1, rbox2)
IntervalProd([-1.0, 0.0, 0.0, 2.0], [-0.5, 1.0, 0.0, 3.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.max

	
IntervalProd.max()

	The maximum value in this interval product

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.measure

	
IntervalProd.measure(ndim=None)

	The (Lebesgue) measure of this interval product.

	Parameters:	ndim : int, optional

The dimension of the measure to apply.
Default: true_ndim

Examples

>>> b, e = [-1, 2.5, 0], [-0.5, 10, 0]
>>> rbox = IntervalProd(b, e)
>>> rbox.measure()
3.75
>>> rbox.measure(ndim=3)
0.0
>>> rbox.measure(ndim=3) == rbox.volume
True
>>> rbox.measure(ndim=1)
inf
>>> rbox.measure() == rbox.squeeze().volume
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.min

	
IntervalProd.min()

	The minimum value in this interval product

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

 	IntervalProd

IntervalProd.squeeze

	
IntervalProd.squeeze()

	Remove the degenerate dimensions.

Note that no changes are made in-place.

	Returns:	squeezed : IntervalProd

The squeezed set

Examples

>>> b, e = [-1, 0, 2], [-0.5, 1, 3]
>>> rbox = IntervalProd(b, e)
>>> rbox.collapse(1, 0).squeeze()
Rectangle([-1.0, 2.0], [-0.5, 3.0])
>>> rbox.collapse([1, 2], [0, 2.5]).squeeze()
Interval(-1.0, -0.5)
>>> rbox.collapse([0, 1, 2], [-1, 0, 2.5]).squeeze()
IntervalProd([], [])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

Cuboid

	
odl.set.domain.Cuboid(begin, end)

	Three-dimensional interval product.

	Parameters:	begin : array-like, shape (3,)

The lower ends of the intervals in the product

end : array-like, shape (3,)

The upper ends of the intervals in the product

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

Interval

	
odl.set.domain.Interval(begin, end)

	One-dimensional interval product.

	Parameters:	begin : array-like, shape (1,), or float

The lower ends of the intervals in the product

end : array-like, shape (1,), or float

The upper ends of the intervals in the product

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	domain

Rectangle

	
odl.set.domain.Rectangle(begin, end)

	Two-dimensional interval product.

	Parameters:	begin : array-like, shape (2,)

The lower ends of the intervals in the product

end : array-like, shape (2,)

The upper ends of the intervals in the product

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

pspace

Cartesian products of LinearSpace instances.

Classes

	ProductSpace(*spaces,**kwargs)
	Cartesian product of LinearSpace‘s.

	ProductSpaceVector(space,parts)
	Elements of a ProductSpace.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

ProductSpace

	
class odl.set.pspace.ProductSpace(*spaces, **kwargs)

	Bases: odl.set.space.LinearSpace

Cartesian product of LinearSpace‘s.

Attributes

	element_type
	ProductSpaceVector

	field
	The field of this vector space.

	size
	The number of factors.

	spaces
	A tuple containing all spaces.

	weights
	Weighting vector or scalar of this product space.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	__getitem__(indices)
	Return self[indices].

	_dist(x1,x2)
	Distance between two vectors.

	_divide(x1,x2,out)
	Quotient out = x1 / x2.

	_inner(x1,x2)
	Inner product of two vectors.

	_lincomb(a,x,b,y,out)
	Linear combination out = a*x + b*y.

	_multiply(x1,x2,out)
	Product out = x1 * x2.

	_norm(x)
	Norm of a vector.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	dist(x1,x2)
	Calculate the distance between two vectors.

	divide(x1,x2[,out])
	Calculate the pointwise division of x1 and x2

	element([inp,cast])
	Create an element in the product space.

	inner(x1,x2)
	Calculate the inner product of x1 and x2.

	lincomb(a,x1[,b,x2,out])
	Linear combination of vectors.

	multiply(x1,x2[,out])
	Calculate the pointwise product of x1 and x2.

	norm(x)
	Calculate the norm of a vector.

	one()
	Create the one vector of the product space.

	zero()
	Create the zero vector of the product space.

	
__init__(*spaces, **kwargs)

	Initialize a new instance.

The Cartesian product
[image: \mathcal{X}_1 \times \dots \times \mathcal{X}_n] for
linear spaces [image: \mathcal{X}_i] is itself a linear space,
where the linear combination is defined component-wise.

	Parameters:	spaces : LinearSpace or int

Can be specified either as a space and an integer, in which
case the power space space**n is created, or
an arbitrary number of spaces.

ord : float, optional

Order of the product distance/norm, i.e.

dist(x, y) = np.linalg.norm(x-y, ord=ord)

norm(x) = np.linalg.norm(x, ord=ord)

Default: 2.0

The following float values for ord can be specified.
Note that any value of ord < 1 only gives a pseudo-norm.

	‘prod_norm’
	Distance Definition

	‘inf’
	max(w * z)

	‘-inf’
	min(w * z)

	other
	sum(w * z**ord)**(1/ord)

Here,

z = (x[0].dist(y[0]),..., x[n-1].dist(y[n-1]))

and w = weights.

Note that 0 <= ord < 1 are not allowed since these
pseudo-norms are very unstable numerically.

weights : array-like, optional

Array of weights, same size as number of space
components. All weights must be positive. It is
multiplied with the tuple of distances before
applying the Rn norm or prod_norm.
Default: (1.0,...,1.0)

This option can only be used together with ord.

prod_norm : callable, optional

Function that should be applied to the array of
distances/norms. Specifying a product norm causes
the space to NOT be a Hilbert space.

Default: np.linalg.norm(x, ord=ord).

field : Field, optional

The field that should be used. Default: spaces[0].field

	Returns:	prodspace : ProductSpace

Examples

>>> from odl import Rn
>>> r2x3 = ProductSpace(Rn(2), Rn(3))

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.element_type

	
ProductSpace.element_type

	ProductSpaceVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.field

	
ProductSpace.field

	The field of this vector space.

The field is the set of scalars of the space, that is numbers that
the vectors in the space can be multiplied with.

	Returns:	field : Field

The underlying field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.size

	
ProductSpace.size

	The number of factors.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.spaces

	
ProductSpace.spaces

	A tuple containing all spaces.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.weights

	
ProductSpace.weights

	Weighting vector or scalar of this product space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.__contains__

	
ProductSpace.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is a LinearSpaceVector instance and
other.space is equal to this space, False otherwise.

Notes

This is the strict default where spaces must be equal.
Subclasses may choose to implement a less strict check.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.__eq__

	
ProductSpace.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is a ProductSpace instance, has
the same length and the same factors. False otherwise.

Examples

>>> from odl import Rn
>>> r2, r3 = Rn(2), Rn(3)
>>> rn, rm = Rn(2), Rn(3)
>>> r2x3, rnxm = ProductSpace(r2, r3), ProductSpace(rn, rm)
>>> r2x3 == rnxm
True
>>> r3x2 = ProductSpace(r3, r2)
>>> r2x3 == r3x2
False
>>> r5 = ProductSpace(*[Rn(1)]*5)
>>> r2x3 == r5
False
>>> r5 = Rn(5)
>>> r2x3 == r5
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.__getitem__

	
ProductSpace.__getitem__(indices)

	Return self[indices].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace._dist

	
ProductSpace._dist(x1, x2)

	Distance between two vectors.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace._divide

	
ProductSpace._divide(x1, x2, out)

	Quotient out = x1 / x2.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace._inner

	
ProductSpace._inner(x1, x2)

	Inner product of two vectors.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace._lincomb

	
ProductSpace._lincomb(a, x, b, y, out)

	Linear combination out = a*x + b*y.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace._multiply

	
ProductSpace._multiply(x1, x2, out)

	Product out = x1 * x2.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace._norm

	
ProductSpace._norm(x)

	Norm of a vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.contains_all

	
ProductSpace.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.contains_set

	
ProductSpace.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.dist

	
ProductSpace.dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : LinearSpaceVector

Vectors whose distance to compute

	Returns:	dist : float

Distance between vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.divide

	
ProductSpace.divide(x1, x2, out=None)

	Calculate the pointwise division of x1 and x2

	Parameters:	x1 : LinearSpaceVector

The dividend

x2 : LinearSpaceVector

The divisor

out : LinearSpaceVector, optional

Vector to write the ratio to

	Returns:	out : LinearSpaceVector

Ratio of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.element

	
ProductSpace.element(inp=None, cast=True)

	Create an element in the product space.

	Parameters:	inp : optional

If inp is None, a new element is created from
scratch by allocation in the spaces. If inp is
already an element of this space, it is re-wrapped.
Otherwise, a new element is created from the
components by calling the element() methods
in the component spaces.

cast : bool

True if casting should be allowed

	Returns:	element : ProductSpaceVector

The new element

Examples

>>> from odl import Rn
>>> r2, r3 = Rn(2), Rn(3)
>>> vec_2, vec_3 = r2.element(), r3.element()
>>> r2x3 = ProductSpace(r2, r3)
>>> vec_2x3 = r2x3.element()
>>> vec_2.space == vec_2x3[0].space
True
>>> vec_3.space == vec_2x3[1].space
True

Create an element of the product space

>>> from odl import Rn
>>> r2, r3 = Rn(2), Rn(3)
>>> prod = ProductSpace(r2, r3)
>>> x2 = r2.element([1, 2])
>>> x3 = r3.element([1, 2, 3])
>>> x = prod.element([x2, x3])
>>> print(x)
{[1.0, 2.0], [1.0, 2.0, 3.0]}

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.inner

	
ProductSpace.inner(x1, x2)

	Calculate the inner product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Factors in the inner product

	Returns:	out : LinearSpace.field element

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.lincomb

	
ProductSpace.lincomb(a, x1, b=None, x2=None, out=None)

	Linear combination of vectors.

Calculates

out = a * x1

or, if b and y are given,

out = a*x1 + b*x2

with error checking of types.

	Parameters:	a : Scalar in the field of this space

Scalar to multiply x1 with.

x1 : LinearSpaceVector

The first of the summands

b : Scalar, optional

Scalar to multiply x2 with.

x2 : LinearSpaceVector, optional

The second of the summands

out : LinearSpaceVector, optional

The Vector that the result should be written to.

	Returns:	out : LinearSpaceVector

Result of the linear combination. If out was provided,
the returned object is a reference to it.

Notes

The vectors out, x1 and x2 may be aligned, thus a call

space.lincomb(x, 2, x, 3.14, out=x)

is (mathematically) equivalent to

x = x * (1 + 2 + 3.14)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.multiply

	
ProductSpace.multiply(x1, x2, out=None)

	Calculate the pointwise product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Multiplicands in the product

out : LinearSpaceVector, optional

Vector to write the product to

	Returns:	out : LinearSpaceVector

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.norm

	
ProductSpace.norm(x)

	Calculate the norm of a vector.

	Parameters:	x : LinearSpaceVector

The vector

	Returns:	out : float

Norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.one

	
ProductSpace.one()

	Create the one vector of the product space.

The i:th component of the product space one vector is the
one vector of the i:th space in the product.

	Parameters:	None

	Returns:	one : ProductSpaceVector

The one vector in the product space

Examples

>>> from odl import Rn
>>> r2, r3 = Rn(2), Rn(3)
>>> one_2, one_3 = r2.one(), r3.one()
>>> r2x3 = ProductSpace(r2, r3)
>>> one_2x3 = r2x3.one()
>>> one_2 == one_2x3[0]
True
>>> one_3 == one_2x3[1]
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpace

ProductSpace.zero

	
ProductSpace.zero()

	Create the zero vector of the product space.

The i:th component of the product space zero vector is the
zero vector of the i:th space in the product.

	Parameters:	None

	Returns:	zero : ProductSpaceVector

The zero vector in the product space

Examples

>>> from odl import Rn
>>> r2, r3 = Rn(2), Rn(3)
>>> zero_2, zero_3 = r2.zero(), r3.zero()
>>> r2x3 = ProductSpace(r2, r3)
>>> zero_2x3 = r2x3.zero()
>>> zero_2 == zero_2x3[0]
True
>>> zero_3 == zero_2x3[1]
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

ProductSpaceVector

	
class odl.set.pspace.ProductSpaceVector(space, parts)

	Bases: odl.set.space.LinearSpaceVector

Elements of a ProductSpace.

Attributes

	T
	The transpose of a vector, the functional given by (.

	parts
	The parts of this vector.

	size
	The number of factors of this vector’s space.

	space
	Space to which this vector belongs.

	ufunc
	ProductSpaceUFuncs, access to numpy style ufuncs.

Methods

	__eq__(other)
	Return self == other.

	__getitem__(indices)
	Return self[indices].

	__setitem__(indices,values)
	Implement self[indices] = vals.

	assign(other)
	Assign the values of other to self.

	copy()
	Create an identical (deep) copy of self.

	dist(other)
	Distance to other.

	divide(x,y)
	Divide by other inplace.

	inner(other)
	Inner product with other.

	lincomb(a,x1[,b,x2])
	Assign a linear combination to this vector.

	multiply(x,y)
	Multiply by other inplace.

	norm()
	Norm of vector

	set_zero()
	Set this vector to zero.

	show([title,indices])
	Display the parts of this vector graphically

	
__init__(space, parts)

	“Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.T

	
ProductSpaceVector.T

	The transpose of a vector, the functional given by (. , self)

	Returns:	transpose : InnerProductOperator

Notes

This function is only defined in inner product spaces.

In a complex space, this takes the conjugate transpose of
the vector.

Examples

>>> from odl import Rn
>>> import numpy as np
>>> rn = Rn(3)
>>> x = rn.element([1, 2, 3])
>>> y = rn.element([2, 1, 3])
>>> x.T(y)
13.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.parts

	
ProductSpaceVector.parts

	The parts of this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.size

	
ProductSpaceVector.size

	The number of factors of this vector’s space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.space

	
ProductSpaceVector.space

	Space to which this vector belongs.

LinearSpace

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.ufunc

	
ProductSpaceVector.ufunc

	ProductSpaceUFuncs, access to numpy style ufuncs.

These are always available if the underlying spaces are NtuplesBase.

See also

	odl.util.ufuncs.NtuplesBaseUFuncs

	Base class for ufuncs in NtuplesBase spaces, sub spaces may override this for greater efficiency.

	odl.util.ufuncs.ProductSpaceUFuncs

	For a list of available ufuncs.

Examples

>>> from odl import Rn
>>> r22 = ProductSpace(Rn(2), 2)
>>> x = r22.element([[1, -2], [-3, 4]])
>>> x.ufunc.absolute()
ProductSpace(Rn(2), 2).element([
 [1.0, 2.0],
 [3.0, 4.0]
])

These functions can also be used with non-vector arguments and support
broadcasting, both by element

>>> x.ufunc.add([1, 1])
ProductSpace(Rn(2), 2).element([
 [2.0, -1.0],
 [-2.0, 5.0]
])

and also recursively

>>> x.ufunc.subtract(1)
ProductSpace(Rn(2), 2).element([
 [0.0, -3.0],
 [-4.0, 3.0]
])

There is also support for various reductions (sum, prod, min, max)

>>> x.ufunc.sum()
0.0

Also supports out parameter

>>> y = r22.element()
>>> result = x.ufunc.absolute(out=y)
>>> result
ProductSpace(Rn(2), 2).element([
 [1.0, 2.0],
 [3.0, 4.0]
])
>>> result is y
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.__eq__

	
ProductSpaceVector.__eq__(other)

	Return self == other.

Overrides the default LinearSpace method since it is
implemented with the distance function, which is prone to
numerical errors. This function checks equality per
component.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.__getitem__

	
ProductSpaceVector.__getitem__(indices)

	Return self[indices].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.__setitem__

	
ProductSpaceVector.__setitem__(indices, values)

	Implement self[indices] = vals.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.assign

	
ProductSpaceVector.assign(other)

	Assign the values of other to self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.copy

	
ProductSpaceVector.copy()

	Create an identical (deep) copy of self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.dist

	
ProductSpaceVector.dist(other)

	Distance to other.

LinearSpace.dist

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.divide

	
ProductSpaceVector.divide(x, y)

	Divide by other inplace.

LinearSpace.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.inner

	
ProductSpaceVector.inner(other)

	Inner product with other.

LinearSpace.inner

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.lincomb

	
ProductSpaceVector.lincomb(a, x1, b=None, x2=None)

	Assign a linear combination to this vector.

Implemented as space.lincomb(a, x1, b, x2, out=self).

LinearSpace.lincomb

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.multiply

	
ProductSpaceVector.multiply(x, y)

	Multiply by other inplace.

LinearSpace.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.norm

	
ProductSpaceVector.norm()

	Norm of vector

LinearSpace.norm

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.set_zero

	
ProductSpaceVector.set_zero()

	Set this vector to zero.

LinearSpace.zero

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	pspace

 	ProductSpaceVector

ProductSpaceVector.show

	
ProductSpaceVector.show(title=None, indices=None, **kwargs)

	Display the parts of this vector graphically

	Parameters:	title : str

Title of the figures

indices : index expression, optional

Indices can refer to parts of a ProductSpaceVector and slices
in the parts in the following way:

Single index (indices=0)
=> display that part

Single slice (indices=slice(None)), or
index list (indices=[0, 1, 3])
=> display those parts

Any tuple, for example:
Created by numpy.s_ indices=np.s_[0, :, :] or
Using a raw tuple indices=([0, 3], slice(None))
=> take the first elements to select the parts and
pass the rest on to the underlying show methods.

kwargs

Additional arguments passed on to the underlying vectors

	Returns:	fig : list of matplotlib.figure.Figure

The resulting figures. It is also shown to the user.

See also

	odl.discr.lp_discr.DiscreteLpVector.show

	Display of a discretized function

	odl.space.base_ntuples.NtuplesBaseVector.show

	Display of sequence type data

	odl.util.graphics.show_discrete_data

	Underlying implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

sets

Basic abstract and concrete sets.

Classes

	CartesianProduct(*sets)
	The Cartesian product of n sets.

	ComplexNumbers
	The set of complex numbers.

	EmptySet
	The empty set.

	Field
	Any set that satisfies the field axioms

	Integers
	The set of integers.

	RealNumbers
	The set of real numbers.

	Set
	An abstract set.

	Strings(length)
	The set of fixed-length (unicode) strings.

	UniversalSet
	The set of all objects.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

CartesianProduct

	
class odl.set.sets.CartesianProduct(*sets)

	Bases: odl.set.sets.Set

The Cartesian product of n sets.

The elements of this set are n-tuples where the i-th entry
is an element of the i-th set.

Attributes

	sets
	The factors (sets) as a tuple.

Methods

	__contains__(other)
	Test if other is contained in this set.

	__eq__(other)
	Return self == other.

	__getitem__(indcs)
	Return self[indcs].

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	element([inp])
	Create a CartesianProduct element.

	
__init__(*sets)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	CartesianProduct

CartesianProduct.sets

	
CartesianProduct.sets

	The factors (sets) as a tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	CartesianProduct

CartesianProduct.__contains__

	
CartesianProduct.__contains__(other)

	Test if other is contained in this set.

	Returns:	contains : bool

True if other has the same length as this Cartesian
product and each entry is contained in the set with
corresponding index, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	CartesianProduct

CartesianProduct.__eq__

	
CartesianProduct.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is a CartesianProduct instance,
has the same length as this Cartesian product and all sets
with the same index are equal, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	CartesianProduct

CartesianProduct.__getitem__

	
CartesianProduct.__getitem__(indcs)

	Return self[indcs].

Examples

>>> emp, univ = EmptySet(), UniversalSet()
>>> prod = CartesianProduct(emp, univ, univ, emp, emp)
>>> prod[2]
UniversalSet()
>>> prod[2:4]
CartesianProduct(UniversalSet(), EmptySet())

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	CartesianProduct

CartesianProduct.contains_all

	
CartesianProduct.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	CartesianProduct

CartesianProduct.contains_set

	
CartesianProduct.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	CartesianProduct

CartesianProduct.element

	
CartesianProduct.element(inp=None)

	Create a CartesianProduct element.

	Parameters:	inp : iterable, optional

Collection of input values for the
LinearSpace.element methods
of all sets in the Cartesian product.

	Returns:	element : tuple

A tuple of the given input

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

ComplexNumbers

	
class odl.set.sets.ComplexNumbers

	Bases: odl.set.sets.Field

The set of complex numbers.

Attributes

	field
	The field of scalars for a field is itself.

Methods

	__contains__(other)
	Test if other is a complex number.

	__eq__(other)
	Return self == other.

	contains_all(array)
	Test if array is an array of real or complex numbers.

	contains_set(other)
	Test if other is a subset of the complex numbers

	element([inp])
	Return a complex number from inp or from scratch.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	ComplexNumbers

ComplexNumbers.field

	
ComplexNumbers.field

	The field of scalars for a field is itself.

Notes

This is a hack for this to work with duck-typing
with LinearSpace‘s.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	ComplexNumbers

ComplexNumbers.__contains__

	
ComplexNumbers.__contains__(other)

	Test if other is a complex number.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	ComplexNumbers

ComplexNumbers.__eq__

	
ComplexNumbers.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	ComplexNumbers

ComplexNumbers.contains_all

	
ComplexNumbers.contains_all(array)

	Test if array is an array of real or complex numbers.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	ComplexNumbers

ComplexNumbers.contains_set

	
ComplexNumbers.contains_set(other)

	Test if other is a subset of the complex numbers

	Returns:	contained : bool

True if other is ComplexNumbers,
RealNumbers or Integers, False else.

Examples

>>> C = ComplexNumbers()
>>> C.contains_set(RealNumbers())
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	ComplexNumbers

ComplexNumbers.element

	
ComplexNumbers.element(inp=None)

	Return a complex number from inp or from scratch.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

EmptySet

	
class odl.set.sets.EmptySet

	Bases: odl.set.sets.Set

The empty set.

None is considered as “no element”, i.e.
None in EmptySet() is True

Methods

	__contains__(other)
	Test if other is None.

	__eq__(other)
	Return self == other.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Return True for the empty set, otherwise False.

	element([inp])
	Return None.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	EmptySet

EmptySet.__contains__

	
EmptySet.__contains__(other)

	Test if other is None.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	EmptySet

EmptySet.__eq__

	
EmptySet.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	EmptySet

EmptySet.contains_all

	
EmptySet.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	EmptySet

EmptySet.contains_set

	
EmptySet.contains_set(other)

	Return True for the empty set, otherwise False.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	EmptySet

EmptySet.element

	
EmptySet.element(inp=None)

	Return None.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

Field

	
class odl.set.sets.Field

	Bases: odl.set.sets.Set

Any set that satisfies the field axioms

For example RealNumbers, ComplexNumbers or
the finite field [image: F_2].

Attributes

	field
	The field of scalars for a field is itself.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	element([inp])
	Return an element from inp or from scratch.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Field

Field.field

	
Field.field

	The field of scalars for a field is itself.

Notes

This is a hack for this to work with duck-typing
with LinearSpace‘s.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Field

Field.__contains__

	
Field.__contains__(other)

	Return other in self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Field

Field.__eq__

	
Field.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Field

Field.contains_all

	
Field.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Field

Field.contains_set

	
Field.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Field

Field.element

	
Field.element(inp=None)

	Return an element from inp or from scratch.

Implementing this method is optional.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

Integers

	
class odl.set.sets.Integers

	Bases: odl.set.sets.Set

The set of integers.

Methods

	__contains__(other)
	Test if other is an integer.

	__eq__(other)
	Return self == other.

	contains_all(array)
	Test if array is an array of integers.

	contains_set(other)
	Test if other is a subset of the real numbers

	element([inp])
	Return an integer from inp or from scratch.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Integers

Integers.__contains__

	
Integers.__contains__(other)

	Test if other is an integer.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Integers

Integers.__eq__

	
Integers.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Integers

Integers.contains_all

	
Integers.contains_all(array)

	Test if array is an array of integers.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Integers

Integers.contains_set

	
Integers.contains_set(other)

	Test if other is a subset of the real numbers

	Returns:	contained : bool

True if other is Integers, False otherwise.

Examples

>>> Z = Integers()
>>> Z.contains_set(RealNumbers())
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Integers

Integers.element

	
Integers.element(inp=None)

	Return an integer from inp or from scratch.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

RealNumbers

	
class odl.set.sets.RealNumbers

	Bases: odl.set.sets.Field

The set of real numbers.

Attributes

	field
	The field of scalars for a field is itself.

Methods

	__contains__(other)
	Test if other is a real number.

	__eq__(other)
	Return self == other.

	contains_all(array)
	Test if array is an array of real numbers.

	contains_set(other)
	Test if other is a subset of the real numbers

	element([inp])
	Return a real number from inp or from scratch.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	RealNumbers

RealNumbers.field

	
RealNumbers.field

	The field of scalars for a field is itself.

Notes

This is a hack for this to work with duck-typing
with LinearSpace‘s.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	RealNumbers

RealNumbers.__contains__

	
RealNumbers.__contains__(other)

	Test if other is a real number.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	RealNumbers

RealNumbers.__eq__

	
RealNumbers.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	RealNumbers

RealNumbers.contains_all

	
RealNumbers.contains_all(array)

	Test if array is an array of real numbers.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	RealNumbers

RealNumbers.contains_set

	
RealNumbers.contains_set(other)

	Test if other is a subset of the real numbers

	Returns:	contained : bool

True if other is RealNumbers or
Integers False else.

Examples

>>> R = RealNumbers()
>>> R.contains_set(RealNumbers())
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	RealNumbers

RealNumbers.element

	
RealNumbers.element(inp=None)

	Return a real number from inp or from scratch.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

Set

	
class odl.set.sets.Set

	Bases: object

An abstract set.

Abstract Methods

Each subclass of Set must implement two methods: one to
check if an object is contained in the set and one to test if two
sets are equal.

Membership test: __contains__(self, other)

Test if other is a member of this set. This function provides
the operator overload for in.

	Parameters:

	
	other : object

	The object to be tested for membership

	Returns:

	
	contains : bool

	True if other is a member of this set, False
otherwise.

Equality test: __eq__(self, other)

Test if other is the same set as this set, i.e. both sets are
of the same type and contain the same elements. This function
provides the operator overload for ==.

	Parameters:

	
	other : object

	The object to be tested for equality.

	Returns:

	
	equals : bool

	True if both sets are of the same type and contain the
same elements, False otherwise.

A default implementation of the operator overload for != via
__ne__(self, other) is provided as not self.__eq__(other).

Element creation (optional): element(self, inp=None)

Create an element of this set, either from scratch or from an
input parameter.

	Parameters:

	
	inp : object, optional

	The object from which to create the new element

	Returns:

	
	element : member of this set

	If inp is None, return an arbitrary element.
Otherwise, return the element created from inp.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	element([inp])
	Return an element from inp or from scratch.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Set

Set.__contains__

	
Set.__contains__(other)

	Return other in self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Set

Set.__eq__

	
Set.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Set

Set.contains_all

	
Set.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Set

Set.contains_set

	
Set.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Set

Set.element

	
Set.element(inp=None)

	Return an element from inp or from scratch.

Implementing this method is optional.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

Strings

	
class odl.set.sets.Strings(length)

	Bases: odl.set.sets.Set

The set of fixed-length (unicode) strings.

Attributes

	length
	The length attribute.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	contains_all(array)
	Test if array is an array of strings with correct length.

	contains_set(other)
	Test if other is a subset of this set.

	element([inp])
	Return a string from inp or from scratch.

	
__init__(length)

	Initialize a new instance.

	Parameters:	length : int

The fixed length of the strings in this set. Must be
positive.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Strings

Strings.length

	
Strings.length

	The length attribute.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Strings

Strings.__contains__

	
Strings.__contains__(other)

	Return other in self.

True if other is a string of at max length
characters, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Strings

Strings.__eq__

	
Strings.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Strings

Strings.contains_all

	
Strings.contains_all(array)

	Test if array is an array of strings with correct length.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Strings

Strings.contains_set

	
Strings.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	Strings

Strings.element

	
Strings.element(inp=None)

	Return a string from inp or from scratch.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

UniversalSet

	
class odl.set.sets.UniversalSet

	Bases: odl.set.sets.Set

The set of all objects.

Forget about set theory for a moment :-).

Methods

	__contains__(other)
	Return True.

	__eq__(other)
	Return self == other.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Return True for any set.

	element([inp])
	Return inp in any case.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	UniversalSet

UniversalSet.__contains__

	
UniversalSet.__contains__(other)

	Return True.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	UniversalSet

UniversalSet.__eq__

	
UniversalSet.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	UniversalSet

UniversalSet.contains_all

	
UniversalSet.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	UniversalSet

UniversalSet.contains_set

	
UniversalSet.contains_set(other)

	Return True for any set.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	sets

 	UniversalSet

UniversalSet.element

	
UniversalSet.element(inp=None)

	Return inp in any case.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

space

Abstract linear vector spaces.

The classes in this module represent abstract mathematical concepts
of vector spaces. They cannot be used directly but are rather intended
to be sub-classed by concrete space implementations. The spaces
provide default implementations of the most important vector space
operations. See the documentation of the respective classes for more
details.

The abstract LinearSpace class is intended for quick prototyping.
It has a number of abstract methods which must be overridden by a
subclass. On the other hand, it provides automatic error checking
and numerous attributes and methods for convenience.

Classes

	LinearSpace(field)
	Abstract linear vector space.

	LinearSpaceNotImplementedError
	Exception for not implemented errors in LinearSpace‘s.

	LinearSpaceTypeError
	Exception for type errors in LinearSpace‘s.

	LinearSpaceVector(space)
	Abstract LinearSpace element.

	UniversalSpace()
	A dummy linear space class.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

LinearSpace

	
class odl.set.space.LinearSpace(field)

	Bases: odl.set.sets.Set

Abstract linear vector space.

Its elements are represented as instances of the inner
LinearSpaceVector class.

Attributes

	element_type
	LinearSpaceVector

	field
	The field of this vector space.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	_dist(x1,x2)
	Calculate the distance between x1 and x2.

	_inner(x1,x2)
	Calculate the inner product of x1 and x2.

	_lincomb(a,x1,b,x2,out)
	Calculate out = a*x1 + b*x2.

	_multiply(x1,x2,out)
	Calculate the pointwise multiplication out = x1 * x2.

	_norm(x)
	Calculate the norm of x.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	dist(x1,x2)
	Calculate the distance between two vectors.

	divide(x1,x2[,out])
	Calculate the pointwise division of x1 and x2

	element([inp])
	Create a LinearSpaceVector from inp or from scratch.

	inner(x1,x2)
	Calculate the inner product of x1 and x2.

	lincomb(a,x1[,b,x2,out])
	Linear combination of vectors.

	multiply(x1,x2[,out])
	Calculate the pointwise product of x1 and x2.

	norm(x)
	Calculate the norm of a vector.

	one()
	A one vector in this space.

	zero()
	A zero vector in this space.

	
__init__(field)

	Initialize a LinearSpace.

This method should be called by all inheriting methods so that the
field property of the space is set properly.

	Parameters:	field : Field

The underlying scalar field of the space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.element_type

	
LinearSpace.element_type

	LinearSpaceVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.field

	
LinearSpace.field

	The field of this vector space.

The field is the set of scalars of the space, that is numbers that
the vectors in the space can be multiplied with.

	Returns:	field : Field

The underlying field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.__contains__

	
LinearSpace.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is a LinearSpaceVector instance and
other.space is equal to this space, False otherwise.

Notes

This is the strict default where spaces must be equal.
Subclasses may choose to implement a less strict check.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.__eq__

	
LinearSpace.__eq__(other)

	Return self == other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace._dist

	
LinearSpace._dist(x1, x2)

	Calculate the distance between x1 and x2.

This method is intended to be private, public callers should
resort to dist which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace._inner

	
LinearSpace._inner(x1, x2)

	Calculate the inner product of x1 and x2.

This method is intended to be private, public callers should
resort to inner which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace._lincomb

	
LinearSpace._lincomb(a, x1, b, x2, out)

	Calculate out = a*x1 + b*x2.

This method is intended to be private, public callers should
resort to lincomb which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace._multiply

	
LinearSpace._multiply(x1, x2, out)

	Calculate the pointwise multiplication out = x1 * x2.

This method is intended to be private, public callers should
resort to multiply which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace._norm

	
LinearSpace._norm(x)

	Calculate the norm of x.

This method is intended to be private, public callers should
resort to norm which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.contains_all

	
LinearSpace.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.contains_set

	
LinearSpace.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.dist

	
LinearSpace.dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : LinearSpaceVector

Vectors whose distance to compute

	Returns:	dist : float

Distance between vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.divide

	
LinearSpace.divide(x1, x2, out=None)

	Calculate the pointwise division of x1 and x2

	Parameters:	x1 : LinearSpaceVector

The dividend

x2 : LinearSpaceVector

The divisor

out : LinearSpaceVector, optional

Vector to write the ratio to

	Returns:	out : LinearSpaceVector

Ratio of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.element

	
LinearSpace.element(inp=None, **kwargs)

	Create a LinearSpaceVector from inp or from scratch.

If called without inp argument, an arbitrary element of the
space is generated without guarantee of its state.

	Parameters:	inp : optional

Input data from which to create the element

kwargs :

Optional further arguments

	Returns:	element : LinearSpaceVector

A vector in this space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.inner

	
LinearSpace.inner(x1, x2)

	Calculate the inner product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Factors in the inner product

	Returns:	out : LinearSpace.field element

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.lincomb

	
LinearSpace.lincomb(a, x1, b=None, x2=None, out=None)

	Linear combination of vectors.

Calculates

out = a * x1

or, if b and y are given,

out = a*x1 + b*x2

with error checking of types.

	Parameters:	a : Scalar in the field of this space

Scalar to multiply x1 with.

x1 : LinearSpaceVector

The first of the summands

b : Scalar, optional

Scalar to multiply x2 with.

x2 : LinearSpaceVector, optional

The second of the summands

out : LinearSpaceVector, optional

The Vector that the result should be written to.

	Returns:	out : LinearSpaceVector

Result of the linear combination. If out was provided,
the returned object is a reference to it.

Notes

The vectors out, x1 and x2 may be aligned, thus a call

space.lincomb(x, 2, x, 3.14, out=x)

is (mathematically) equivalent to

x = x * (1 + 2 + 3.14)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.multiply

	
LinearSpace.multiply(x1, x2, out=None)

	Calculate the pointwise product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Multiplicands in the product

out : LinearSpaceVector, optional

Vector to write the product to

	Returns:	out : LinearSpaceVector

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.norm

	
LinearSpace.norm(x)

	Calculate the norm of a vector.

	Parameters:	x : LinearSpaceVector

The vector

	Returns:	out : float

Norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.one

	
LinearSpace.one()

	A one vector in this space.

The one vector is defined as the multiplicative unit of a space.

	Returns:	v : LinearSpaceVector

The one vector of this space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpace

LinearSpace.zero

	
LinearSpace.zero()

	A zero vector in this space.

The zero vector is defined as the additive unit of a space.

	Returns:	v : LinearSpaceVector

The zero vector of this space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

LinearSpaceNotImplementedError

	
exception odl.set.space.LinearSpaceNotImplementedError

	Exception for not implemented errors in LinearSpace‘s.

These are raised when a method in LinearSpace that has not been
defined in a specific space is called.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

LinearSpaceTypeError

	
exception odl.set.space.LinearSpaceTypeError

	Exception for type errors in LinearSpace‘s.

These are raised when the wrong type of element is fed to
LinearSpace.lincomb and related functions.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

LinearSpaceVector

	
class odl.set.space.LinearSpaceVector(space)

	Bases: object

Abstract LinearSpace element.

Not intended for creation of vectors, use the space’s
LinearSpace.element method instead.

Attributes

	T
	The transpose of a vector, the functional given by (.

	space
	Space to which this vector belongs.

Methods

	__eq__(other)
	Return self == other.

	assign(other)
	Assign the values of other to self.

	copy()
	Create an identical (deep) copy of self.

	dist(other)
	Distance to other.

	divide(x,y)
	Divide by other inplace.

	inner(other)
	Inner product with other.

	lincomb(a,x1[,b,x2])
	Assign a linear combination to this vector.

	multiply(x,y)
	Multiply by other inplace.

	norm()
	Norm of vector

	set_zero()
	Set this vector to zero.

	
__init__(space)

	Default initializer of vectors.

All deriving classes must call this method to set space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.T

	
LinearSpaceVector.T

	The transpose of a vector, the functional given by (. , self)

	Returns:	transpose : InnerProductOperator

Notes

This function is only defined in inner product spaces.

In a complex space, this takes the conjugate transpose of
the vector.

Examples

>>> from odl import Rn
>>> import numpy as np
>>> rn = Rn(3)
>>> x = rn.element([1, 2, 3])
>>> y = rn.element([2, 1, 3])
>>> x.T(y)
13.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.space

	
LinearSpaceVector.space

	Space to which this vector belongs.

LinearSpace

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.__eq__

	
LinearSpaceVector.__eq__(other)

	Return self == other.

Two vectors are equal if their distance is 0

	Parameters:	other : LinearSpaceVector

Vector in this space.

	Returns:	equals : bool

True if the vectors are equal, else false.

Notes

Equality is very sensitive to numerical errors, thus any
operations on a vector should be expected to break equality
testing.

Examples

>>> from odl import Rn
>>> import numpy as np
>>> rn = Rn(1, norm=np.linalg.norm)
>>> x = rn.element([0.1])
>>> x == x
True
>>> y = rn.element([0.1])
>>> x == y
True
>>> z = rn.element([0.3])
>>> x+x+x == z
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.assign

	
LinearSpaceVector.assign(other)

	Assign the values of other to self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.copy

	
LinearSpaceVector.copy()

	Create an identical (deep) copy of self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.dist

	
LinearSpaceVector.dist(other)

	Distance to other.

LinearSpace.dist

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.divide

	
LinearSpaceVector.divide(x, y)

	Divide by other inplace.

LinearSpace.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.inner

	
LinearSpaceVector.inner(other)

	Inner product with other.

LinearSpace.inner

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.lincomb

	
LinearSpaceVector.lincomb(a, x1, b=None, x2=None)

	Assign a linear combination to this vector.

Implemented as space.lincomb(a, x1, b, x2, out=self).

LinearSpace.lincomb

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.multiply

	
LinearSpaceVector.multiply(x, y)

	Multiply by other inplace.

LinearSpace.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.norm

	
LinearSpaceVector.norm()

	Norm of vector

LinearSpace.norm

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	LinearSpaceVector

LinearSpaceVector.set_zero

	
LinearSpaceVector.set_zero()

	Set this vector to zero.

LinearSpace.zero

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

UniversalSpace

	
class odl.set.space.UniversalSpace

	Bases: odl.set.space.LinearSpace

A dummy linear space class.

Mostly raising LinearSpaceNotImplementedError.

Attributes

	element_type
	LinearSpaceVector

	field
	The field of this vector space.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	_dist(x1,x2)
	Dummy distance method.

	_divide(x1,x2,out)
	Dummy division method.

	_inner(x1,x2)
	Dummy inner product method.

	_lincomb(a,x1,b,x2,out)
	Dummy linear combination.

	_multiply(x1,x2,out)
	Dummy multiplication method.

	_norm(x)
	Dummy norm method.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	dist(x1,x2)
	Calculate the distance between two vectors.

	divide(x1,x2[,out])
	Calculate the pointwise division of x1 and x2

	element([inp])
	Dummy element creation method.

	inner(x1,x2)
	Calculate the inner product of x1 and x2.

	lincomb(a,x1[,b,x2,out])
	Linear combination of vectors.

	multiply(x1,x2[,out])
	Calculate the pointwise product of x1 and x2.

	norm(x)
	Calculate the norm of a vector.

	one()
	A one vector in this space.

	zero()
	A zero vector in this space.

	
__init__()

	Initialize a universal space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.element_type

	
UniversalSpace.element_type

	LinearSpaceVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.field

	
UniversalSpace.field

	The field of this vector space.

The field is the set of scalars of the space, that is numbers that
the vectors in the space can be multiplied with.

	Returns:	field : Field

The underlying field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.__contains__

	
UniversalSpace.__contains__(other)

	Return other in self.

Dummy membership check, True for any LinearSpaceVector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.__eq__

	
UniversalSpace.__eq__(other)

	Return self == other.

Dummy check, True for any LinearSpace.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace._dist

	
UniversalSpace._dist(x1, x2)

	Dummy distance method.

raises LinearSpaceNotImplementedError.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace._divide

	
UniversalSpace._divide(x1, x2, out)

	Dummy division method.

raises LinearSpaceNotImplementedError.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace._inner

	
UniversalSpace._inner(x1, x2)

	Dummy inner product method.

raises LinearSpaceNotImplementedError.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace._lincomb

	
UniversalSpace._lincomb(a, x1, b, x2, out)

	Dummy linear combination.

raises LinearSpaceNotImplementedError.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace._multiply

	
UniversalSpace._multiply(x1, x2, out)

	Dummy multiplication method.

raises LinearSpaceNotImplementedError.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace._norm

	
UniversalSpace._norm(x)

	Dummy norm method.

raises LinearSpaceNotImplementedError.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.contains_all

	
UniversalSpace.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.contains_set

	
UniversalSpace.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.dist

	
UniversalSpace.dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : LinearSpaceVector

Vectors whose distance to compute

	Returns:	dist : float

Distance between vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.divide

	
UniversalSpace.divide(x1, x2, out=None)

	Calculate the pointwise division of x1 and x2

	Parameters:	x1 : LinearSpaceVector

The dividend

x2 : LinearSpaceVector

The divisor

out : LinearSpaceVector, optional

Vector to write the ratio to

	Returns:	out : LinearSpaceVector

Ratio of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.element

	
UniversalSpace.element(inp=None)

	Dummy element creation method.

raises LinearSpaceNotImplementedError.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.inner

	
UniversalSpace.inner(x1, x2)

	Calculate the inner product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Factors in the inner product

	Returns:	out : LinearSpace.field element

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.lincomb

	
UniversalSpace.lincomb(a, x1, b=None, x2=None, out=None)

	Linear combination of vectors.

Calculates

out = a * x1

or, if b and y are given,

out = a*x1 + b*x2

with error checking of types.

	Parameters:	a : Scalar in the field of this space

Scalar to multiply x1 with.

x1 : LinearSpaceVector

The first of the summands

b : Scalar, optional

Scalar to multiply x2 with.

x2 : LinearSpaceVector, optional

The second of the summands

out : LinearSpaceVector, optional

The Vector that the result should be written to.

	Returns:	out : LinearSpaceVector

Result of the linear combination. If out was provided,
the returned object is a reference to it.

Notes

The vectors out, x1 and x2 may be aligned, thus a call

space.lincomb(x, 2, x, 3.14, out=x)

is (mathematically) equivalent to

x = x * (1 + 2 + 3.14)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.multiply

	
UniversalSpace.multiply(x1, x2, out=None)

	Calculate the pointwise product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Multiplicands in the product

out : LinearSpaceVector, optional

Vector to write the product to

	Returns:	out : LinearSpaceVector

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.norm

	
UniversalSpace.norm(x)

	Calculate the norm of a vector.

	Parameters:	x : LinearSpaceVector

The vector

	Returns:	out : float

Norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.one

	
UniversalSpace.one()

	A one vector in this space.

The one vector is defined as the multiplicative unit of a space.

	Returns:	v : LinearSpaceVector

The one vector of this space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	set

 	space

 	UniversalSpace

UniversalSpace.zero

	
UniversalSpace.zero()

	A zero vector in this space.

The zero vector is defined as the additive unit of a space.

	Returns:	v : LinearSpaceVector

The zero vector of this space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

solvers

Modules

	advanced
	chambolle_pock

	proximal_operators

	findroot
	newton

	iterative
	iterative

	linear

	scalar
	gradient

	steplen

	util
	partial

	vector
	newton

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

advanced

Modules

	chambolle_pock
	chambolle_pock_solver

	proximal_operators
	combine_proximals

	proximal_convexconjugate_l1

	proximal_convexconjugate_l2

	proximal_nonnegativity

	proximal_zero

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	advanced

chambolle_pock

First-order primal-dual algorithm developed by Chambolle and Pock.

The Chambolle-Pock algorithm is a flexible method well suited for
non-smooth convex optimization problems in imaging. It was first
proposed in [CP2011a].

Functions

	chambolle_pock_solver(op,x,tau,sigma,...)
	Chambolle-Pock algorithm for non-smooth convex optimization problems.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	advanced

 	chambolle_pock

chambolle_pock_solver

	
odl.solvers.advanced.chambolle_pock.chambolle_pock_solver(op, x, tau, sigma, proximal_primal, proximal_dual, niter=1, **kwargs)

	Chambolle-Pock algorithm for non-smooth convex optimization problems.

First order primal-dual hybrid-gradient method for non-smooth convex
optimization problems with known saddle-point structure. The
primal formulation of the general problem is:

min_{x in X} F(K x) + G(x)

where X and Y are finite-dimensional Hilbert spaces, K
is a linear operator K : X -> Y. and G : X -> [0, +inf]
and F : Y -> [0, +inf] are proper, convex, lower-semicontinuous
functionals.

The Chambolle-Pock algorithm basically consists of alternating a
gradient ascent in the dual variable y and a gradient descent in the
primal variable x. The proximal operator is used to generate a ascent
direction for the convex conjugate of F and descent direction for G.
Additionally an over-relaxation in the primal variable is performed.

	Parameters:	op : Operator

A (product space) operator between Hilbert spaces with domain X
and range Y

x : element in the domain of op

Starting point of the iteration

tau : positive float

Step size parameter for the update of the primal variable x.
Controls the extent to which proximal_primal maps points
towards the minimum of G.

sigma : positive float

Step size parameter for the update of the dual variable y. Controls
the extent to which proximal_dual maps points towards the
minimum of F_cc.

proximal_primal : callable

Evaluated at tau, the function returns the proximal operator,
prox_tau[G](x), of the functional G. The domain of G and its
proximal operator instance are the space, X, of the primal variable
x i.e. the domain of op.

proximal_dual : callable

Evaluated at sigma, the function returns the proximal operator,
prox_sigma[F_cc](x), of the convex conjugate, F_cc, of the function
F. The domain of F_cc and its proximal operator instance are the
space, Y, of the dual variable y i.e. the range of op.

niter : non-negative int, optional

Number of iterations

	Other Parameters:

		theta : float in [0, 1], optional

Relaxation parameter. Default: 1

gamma : non-negative float, optional

Acceleration parameter. If not None overwrites theta and uses
variable relaxation parameter and step sizes with tau and
sigma as initial values. Requires G or F_cc to be uniformly
convex. Default: None

partial : Partial, optional

If not None the Partial instance(s) are executed in each
iteration, e.g. plotting each iterate. Default: None

x_relax : element in the domain of op, optional

Required to resume iteration. If None it is a copy of the primal
variable x. Default: None

y : element in the range of op, optional

Required to resume iteration. If None it is set to a zero element
in Y which is the range of op. Default: None

Notes

For a more detailed documentation see Chambolle-Pock algorithm.

For references on the Chambolle-Pock algorithm see [CP2011a] and
[CP2011b].

This implementation of the CP algorithm is along the lines of
[Sid+2012].

For more on convex analysis including convex conjugates and
resolvent operators see [Roc1970].

For more on proximal operators and algorithms see [PB2014].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	advanced

proximal_operators

Factory functions for creating proximal operators.

For more details see Proximal Operators and references therein. For
more details on proximal operators including how to evaluate the proximal
operator of a variety of functions see [PB2014].

Functions

	combine_proximals(factory_list)
	Combine proximal operators into a diagonal product space operator.

	proximal_convexconjugate_l1(space[,lam,g])
	Proximal operator factory of the convex conjugate of the l1-semi-norm.

	proximal_convexconjugate_l2(space[,lam,g])
	Proximal operator factory of the convex conjugate of the l2-norm.

	proximal_nonnegativity(space)
	Function to create the proximal operator of G(x) = ind(x > 0).

	proximal_zero(space)
	Function to create the proximal operator of G(x) = 0.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	advanced

 	proximal_operators

combine_proximals

	
odl.solvers.advanced.proximal_operators.combine_proximals(factory_list)

	Combine proximal operators into a diagonal product space operator.

This assumes the functional to be separable across variables in order to
make use of the separable sum property of proximal operators.

prox_tau[f(x) + g(y)](x, y) = (prox_tau[f](x), prox_tau[g](y))

	Parameters:	factory_list : list of Operator

A list containing proximal operators which are created by the
corresponding factory functions

	Returns:	diag_op : Operator

Returns a diagonal product space operator to be initialized with
the same step size parameter

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	advanced

 	proximal_operators

proximal_convexconjugate_l1

	
odl.solvers.advanced.proximal_operators.proximal_convexconjugate_l1(space, lam=1, g=None)

	Proximal operator factory of the convex conjugate of the l1-semi-norm.

Function for the proximal operator of the convex conjugate of the
functional F where F is an l1-semi-norm

F(x) = lam || ||x-g||_p ||_1

with x and g elements in space, scaling factor lam, and point-wise
magnitude ||x||_p of x. If x is vector-valued, ||x||_p is the point-wise
l2-norm across the vector components.

The convex conjugate, F_cc, of F is given by the indicator function of
the set box(lam)

F_cc(y) = lam ind_{box(lam)}(||y / lam||_p + <y / lam, g>)

where box(lam) is a hypercube centered at the origin with width 2 lam.

The proximal operator of F_cc is

prox_sigma[F_cc](y) = lam (y - sigma g) / (max(lam 1_{||y||_p},
||y - sigma g||_p)

where max(.,.) thresholds the lower bound of ||y||_p point-wise and
1_{||y||_p} is a unit vector in the space of ||y||_p.

	Parameters:	space : DiscreteLp or ProductSpace of DiscreteLp spaces

Domain of the functional F

g : DiscreteLpVector

An element in space

lam : positive float

Scaling factor or regularization parameter

	Returns:	prox : Operator

Returns the proximal operator to be initialized

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	advanced

 	proximal_operators

proximal_convexconjugate_l2

	
odl.solvers.advanced.proximal_operators.proximal_convexconjugate_l2(space, lam=1, g=None)

	Proximal operator factory of the convex conjugate of the l2-norm.

Function for the proximal operator of the convex conjugate of the
functional F where F is the l2-norm

F(x) = lam 1/2 ||x - g||_2^2

with x and g elements in space, scaling factor lam, and given data g.

The convex conjugate, F_cc, of F is given by

F_cc(y) = 1/lam (1/2 ||y/lam||_2^2 + <y/lam,g>)

The proximal operator of F_cc is given by

prox_sigma[F_cc](y) = (y - sigma g) / (1 + sigma/lam)

	Parameters:	space : DiscreteLp or ProductSpace of DiscreteLp

Domain of F(x)

g : DiscreteLpVector

An element in space

lam : positive float

Scaling factor or regularization parameter

	Returns:	prox : Operator

Returns the proximal operator to be initialized

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	advanced

 	proximal_operators

proximal_nonnegativity

	
odl.solvers.advanced.proximal_operators.proximal_nonnegativity(space)

	Function to create the proximal operator of G(x) = ind(x > 0).

Function for the proximal operator of the functional G(x)=ind(x > 0) to be
initialized.

If P is the set of non-negative elements, the indicator function of
which is defined as

ind(x > 0) = {0 if x in P, infinity if x is not in P}

with x being an element in space.

The proximal operator of G is the point-wise non-negativity thresholding
of x

prox_tau[G](x) = {x if x > 0, 0 if <= 0}

It is independent of tau and invariant under a positive rescaling of G
which leaves the indicator function as it stands.

	Parameters:	space : DiscreteLp or ProductSpace of DiscreteLp

Domain of the functional G(x)

	Returns:	prox : Operator

Returns the proximal operator to be initialized

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	advanced

 	proximal_operators

proximal_zero

	
odl.solvers.advanced.proximal_operators.proximal_zero(space)

	Function to create the proximal operator of G(x) = 0.

Function to initialize the proximal operator of G(x) = 0 where x is an
element in space. The proximal operator of this functional is the
identity operator

prox_tau[G](x) = x

It is independent of tau.

	Parameters:	space : DiscreteLp or ProductSpace of DiscreteLp spaces

Domain of the functional G

	Returns:	prox : Operator

Returns the proximal operator to be initialized

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

findroot

Modules

	newton
	bfgs_method

	broydens_first_method

	broydens_second_method

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	findroot

newton

(Quasi-)Newton schemes to find zeros of functions (gradients).

Functions

	bfgs_method(grad,x,line_search[,niter,...])
	Quasi-Newton BFGS method to minimize a differentiable function.

	broydens_first_method(grad,x,line_search)
	Broyden’s first method, a quasi-Newton scheme.

	broydens_second_method(grad,x,line_search)
	Broyden’s first method, a quasi-Newton scheme.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	findroot

 	newton

bfgs_method

	
odl.solvers.findroot.newton.bfgs_method(grad, x, line_search, niter=1, partial=None)

	Quasi-Newton BFGS method to minimize a differentiable function.

This is a general and optimized implementation of a quasi-Newton
method with BFGS update for solving a general unconstrained
optimization problem

[image: \min f(x)]

for a differentiable function
[image: f: \mathcal{X}\to \mathbb{R}] on a Hilbert space
[image: \mathcal{X}]. It does so by finding a zero of the gradient

[image: \nabla f: \mathcal{X} \to \mathcal{X}].

The QN method is an approximate Newton method, where the Hessian
is approximated and gradually updated in each step. This
implementation uses the rank-one BFGS update schema where the
inverse of the Hessian is recalculated in each iteration.

The algorithm is described in [GNS2009], Section 12.3 and in the
BFGS Wikipedia article [https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm]

	Parameters:	grad : Operator

Gradient mapping of the objective function, i.e. the mapping
[image: x \mapsto \nabla f(x) \in \mathcal{X}]

x : element of the domain of grad

Starting point of the iteration

line_search : LineSearch

Strategy to choose the step length

niter : int, optional

Number of iterations

partial : Partial, optional

Object executing code per iteration, e.g. plotting each iterate

	Returns:	None

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	findroot

 	newton

broydens_first_method

	
odl.solvers.findroot.newton.broydens_first_method(grad, x, line_search, niter=1, partial=None)

	Broyden’s first method, a quasi-Newton scheme.

This is a general and optimized implementation of Broyden’s first
(or ‘good’) method, a quasi-Newton method for solving a general
unconstrained optimization problem

[image: \min f(x)]

for a differentiable function
[image: f: \mathcal{X}\to \mathbb{R}] on a Hilbert space
[image: \mathcal{X}]. It does so by finding a zero of the gradient

[image: \nabla f: \mathcal{X} \to \mathcal{X}]

using a Newton-type update scheme with approximate Hessian.

The algorithm is described in [Bro1965] and [Kva1991], and in a
Wikipedia article [https://en.wikipedia.org/wiki/Broyden’s_method].

	Parameters:	grad : Operator

Gradient mapping of the objective function, i.e. the mapping
[image: x \mapsto \nabla f(x) \in \mathcal{X}]

x : element of the domain of grad

Starting point of the iteration

line_search : LineSearch

Strategy to choose the step length

niter : int, optional

Number of iterations

partial : Partial, optional

Object executing code per iteration, e.g. plotting each iterate

	Returns:	None

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	findroot

 	newton

broydens_second_method

	
odl.solvers.findroot.newton.broydens_second_method(grad, x, line_search, niter=1, partial=None)

	Broyden’s first method, a quasi-Newton scheme.

This is a general and optimized implementation of Broyden’s second
(or ‘bad’) method, a quasi-Newton method for solving a general
unconstrained optimization problem

[image: \min f(x)]

for a differentiable function
[image: f: \mathcal{X}\to \mathbb{R}] on a Hilbert space
[image: \mathcal{X}]. It does so by finding a zero of the gradient

[image: \nabla f: \mathcal{X} \to \mathcal{X}]

using a Newton-type update scheme with approximate Hessian.

The algorithm is described in [Bro1965] and [Kva1991], and in a
Wikipedia article [https://en.wikipedia.org/wiki/Broyden’s_method]

	Parameters:	grad : Operator

Gradient mapping of the objective function, i.e. the mapping
[image: x \mapsto \nabla f(x) \in \mathcal{X}]

x : element of the domain of grad

Starting point of the iteration

line_search : LineSearch

Strategy to choose the step length

niter : int, optional

Number of iterations

partial : Partial, optional

Object executing code per iteration, e.g. plotting each iterate

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

iterative

Modules

	iterative
	conjugate_gradient

	conjugate_gradient_normal

	exp_zero_seq

	gauss_newton

	landweber

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	iterative

iterative

Simple iterative type optimization schemes.

Functions

	conjugate_gradient(op,x,rhs[,niter,partial])
	Optimized implementation of CG for self-adjoint operators.

	conjugate_gradient_normal(op,x,rhs[,...])
	Optimized implementation of CG for the normal equation.

	exp_zero_seq(base)
	The default exponential zero sequence.

	gauss_newton(op,x,rhs[,niter,zero_seq,...])
	Optimized implementation of a Gauss-Newton method.

	landweber(op,x,rhs[,niter,omega,...])
	Optimized implementation of Landweber’s method.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	iterative

 	iterative

conjugate_gradient

	
odl.solvers.iterative.iterative.conjugate_gradient(op, x, rhs, niter=1, partial=None)

	Optimized implementation of CG for self-adjoint operators.

This method solves the inverse problem (of the first kind)

[image: A x = y]

for a linear and self-adjoint Operator A.

It uses a minimum amount of memory copies by applying re-usable
temporaries and in-place evaluation.

The method is described (for linear systems) in a
Wikipedia article [https://en.wikipedia.org/wiki/Conjugate_gradient_method].

	Parameters:	op : linear Operator

Operator in the inverse problem. It must be linear and
self-adjoint. This implies in particular that its domain and
range are equal.

x : element of the domain of op

Vector to which the result is written. Its initial value is
used as starting point of the iteration, and its values are
updated in each iteration step.

rhs : element of the range of op

Right-hand side of the equation defining the inverse problem

niter : int, optional

Maximum number of iterations

partial : Partial, optional

Object executing code per iteration, e.g. plotting each iterate

	Returns:	None

See also

	conjugate_gradient_normal

	Solver for nonsymmetric matrices

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	iterative

 	iterative

conjugate_gradient_normal

	
odl.solvers.iterative.iterative.conjugate_gradient_normal(op, x, rhs, niter=1, partial=None)

	Optimized implementation of CG for the normal equation.

This method solves the normal equation

[image: A^* A x = A^* y]

to the inverse problem (of the first kind)

[image: A x = y]

with a linear Operator A.

It uses a minimum amount of memory copies by applying re-usable
temporaries and in-place evaluation.

The method is described (for linear systems) in a
Wikipedia article [https://en.wikipedia.org/wiki/Conjugate_gradient_method#Conjugate_gradient_on_the_normal_equations].

	Parameters:	op : Operator

Operator in the inverse problem. If not linear, it must have
an implementation of Operator.derivative, which
in turn must implement Operator.adjoint, i.e.
the call op.derivative(x).adjoint must be valid.

x : element of the domain of op

Vector to which the result is written. Its initial value is
used as starting point of the iteration, and its values are
updated in each iteration step.

rhs : element of the range of op

Right-hand side of the equation defining the inverse problem

niter : int, optional

Maximum number of iterations

partial : Partial, optional

Object executing code per iteration, e.g. plotting each iterate

	Returns:	None

See also

	conjugate_gradient

	Optimized solver for symmetric matrices

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	iterative

 	iterative

exp_zero_seq

	
odl.solvers.iterative.iterative.exp_zero_seq(base)

	The default exponential zero sequence.

It is defined by

t_0 = 1.0
t_m = t_(m-1) / base

or, in closed form

t_m = base^(-m-1)

	Parameters:	base : float

Base of the sequence. Its absolute value must be larger than
1.

	Yields:	val : float

The next value in the exponential sequence

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	iterative

 	iterative

gauss_newton

	
odl.solvers.iterative.iterative.gauss_newton(op, x, rhs, niter=1, zero_seq=<generator object exp_zero_seq>, partial=None)

	Optimized implementation of a Gauss-Newton method.

This method solves the inverse problem (of the first kind)

[image: A (x) = y]

for a (Frechet-) differentiable Operator A using a
Gauss-Newton iteration.

It uses a minimum amount of memory copies by applying re-usable
temporaries and in-place evaluation.

A variant of the method applied to a specific problem is described
in a
Wikipedia article [https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm].

	Parameters:	op : Operator

Operator in the inverse problem. If not linear, it must have
an implementation of Operator.derivative, which
in turn must implement Operator.adjoint, i.e.
the call op.derivative(x).adjoint must be valid.

x : element of the domain of op

Vector to which the result is written. Its initial value is
used as starting point of the iteration, and its values are
updated in each iteration step.

rhs : element of the range of op

Right-hand side of the equation defining the inverse problem

niter : int, optional

Maximum number of iterations

zero_seq : iterable, optional

Zero sequence whose values are used for the regularization of
the linearized problem in each Newton step

partial : Partial, optional

Object executing code per iteration, e.g. plotting each iterate

	Returns:	None

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	iterative

 	iterative

landweber

	
odl.solvers.iterative.iterative.landweber(op, x, rhs, niter=1, omega=1, projection=None, partial=None)

	Optimized implementation of Landweber’s method.

This method calculates an approximate least-squares solution of
the inverse problem of the first kind

[image: \mathcal{A} (x) = y],

for a given [image: y\in \mathcal{Y}], i.e. an approximate
solution [image: x^*] to

[image: \min_{x\in \mathcal{X}} \lVert \mathcal{A}(x) - y \rVert_{\mathcal{Y}}^2]

for a (Frechet-) differentiable operator
[image: \mathcal{A}: \mathcal{X} \to \mathcal{Y}] between Hilbert
spaces [image: \mathcal{X}] and [image: \mathcal{Y}]. The method
starts from an initial guess [image: x_0] and uses the
iteration

[image: x_{k+1} = x_k - \omega \ \partial \mathcal{A}(x)^* (\mathcal{A}(x_k) - y)],

where [image: \partial \mathcal{A}(x)] is the Frechet derivativ
of [image: \mathcal{A}] at [image: x] and [image: \omega] is a
relaxation parameter. For linear problems, a choice
[image: 0 < \omega < 2/\lVert \mathcal{A}\rVert] guarantees
convergence, where [image: \lVert\mathcal{A}\rVert] stands for the
operator norm of [image: \mathcal{A}].

Users may also optionally provide a projection to project each
iterate onto some subset. For example enforcing positivity.

This implementation uses a minimum amount of memory copies by
applying re-usable temporaries and in-place evaluation.

The method is also described in a
Wikipedia article [https://en.wikipedia.org/wiki/Landweber_iteration].

	Parameters:	op : Operator

Operator in the inverse problem. It must have a Operator.derivative
property, which returns a new operator which in turn has an
Operator.adjoint property, i.e. op.derivative(x).adjoint must be
well-defined for x in the operator domain.

x : element of the domain of op

Vector to which the result is written. Its initial value is
used as starting point of the iteration, and its values are
updated in each iteration step.

rhs : element of the range of op

Right-hand side of the equation defining the inverse problem

niter : int, optional

Maximum number of iterations

omega : positive float, optional

Relaxation parameter in the iteration

projection : callable, optional

Function that can be used to modify the iterates in each iteration,
for example enforcing positivity. The function should take one
argument and modify it in place.

partial : Partial, optional

Object executing code per iteration, e.g. plotting each iterate

	Returns:	None

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

linear

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

scalar

Gradient-based optimization schemes.

Modules

	gradient
	steepest_descent

	steplen
	BacktrackingLineSearch

	BarzilaiBorweinStep

	ConstantLineSearch

	LineSearch

	StepLength

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	scalar

gradient

Gradient-based optimization schemes.

Functions

	steepest_descent(grad,x[,niter,...])
	Steepest descent method to minimize an objective function.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	scalar

 	gradient

steepest_descent

	
odl.solvers.scalar.gradient.steepest_descent(grad, x, niter=1, line_search=1, projection=None, partial=None)

	Steepest descent method to minimize an objective function.

General implementation of steepest decent (also known as gradient
decent) for solving

[image: \min f(x)]

The algorithm is intended for unconstrained problems. It needs line
search in order guarantee convergence. With appropriate line search,
it can also be used for constrained problems where one wants to
minimize over some given set [image: C]. This can be done by defining
[image: f(x) = \infty] for [image: x\not\in C], or by providing a
projection function that projects the iterates on [image: C].

The algorithm is described in [BV2004], section 9.3–9.4
(book available online [http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf]),
[GNS2009], Section 12.2, and wikipedia
Gradient_descent [https://en.wikipedia.org/wiki/Gradient_descent].

	Parameters:	grad : Operator

Gradient of the objective function,
[image: x \mapsto \nabla f(x)]

x : element of the domain of deriv

Starting point of the iteration

niter : int, optional

Number of iterations

line_search : float or LineSearch, optional

Strategy to choose the step length. If a float is given, uses it as a
fixed step length.

projection : callable, optional

Function that can be used to modify the iterates in each iteration,
for example enforcing positivity. The function should take one
argument and modify it inplace.

partial : Partial, optional

Object executing code per iteration, e.g. plotting each iterate

See also

	odl.solvers.iterative.iterative.landweber

	Optimized solver for the case f(x) = ||Ax - b||_2^2

	odl.solvers.iterative.iterative.conjugate_gradient

	Optimized solver for the case f(x) = x^T Ax - 2 x^T b

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	scalar

steplen

Step length computation for optimization schemes.

Classes

	BacktrackingLineSearch(function[,tau,c,...])
	Backtracking line search for step length calculation.

	BarzilaiBorweinStep(gradf[,step0])
	Barzilai-Borwein method to compute a step length.

	ConstantLineSearch(constant)
	Line search object that returns a constant step length.

	LineSearch
	Abstract base class for line search step length methods.

	StepLength
	Abstract base class for step length methods.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	scalar

 	steplen

BacktrackingLineSearch

	
class odl.solvers.scalar.steplen.BacktrackingLineSearch(function, tau=0.5, c=0.01, max_num_iter=None)

	Bases: odl.solvers.scalar.steplen.LineSearch

Backtracking line search for step length calculation.

This methods approximately finds the longest step length fulfilling
the Armijo-Goldstein condition.

The line search algorithm is described in [BV2004], page 464
(book available online [http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf]) and
[GNS2009], pages 378–379. See also
Backtracking_line_search [https://en.wikipedia.org/wiki/Backtracking_line_search].

Methods

	__call__(x,direction,dir_derivative)
	Calculate the optimal step length along a line.

	__eq__
	Return self==value.

	
__init__(function, tau=0.5, c=0.01, max_num_iter=None)

	Initialize a new instance.

	Parameters:	function : callable

The cost function of the optimization problem to be solved.

tau : float, optional

The amount the step length is decreased in each iteration,
as long as it does not fulfill the decrease condition.
The step length is updated as step_length *= tau

c : float, optional

The ‘discount factor’ on the
step length * direction derivative,
which the new point needs to be smaller than in order to
fulfill the condition and be accepted (see the references).

max_num_iter : int, optional

Maximum number of iterations allowed each time the line
search method is called. If not set, this number is
calculated to allow a shortest step length of 0.0001.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	scalar

 	steplen

 	BacktrackingLineSearch

BacktrackingLineSearch.__call__

	
BacktrackingLineSearch.__call__(x, direction, dir_derivative)

	Calculate the optimal step length along a line.

	Parameters:	x : Operator.domain element

The current point

direction : Operator.domain element

Search direction in which the line search should be computed

dir_derivative : float

Directional derivative along the direction

	Returns:	step : float

The computed step length

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	scalar

 	steplen

BarzilaiBorweinStep

	
class odl.solvers.scalar.steplen.BarzilaiBorweinStep(gradf, step0=0.0005)

	Bases: object

Barzilai-Borwein method to compute a step length.

Barzilai-Borwein method to compute a step length
for gradient descent methods.

The method is described in [BB1988] and [Ray1997].

Methods

	__call__(x,x0)
	Calculate the step length at a point.

	__eq__
	Return self==value.

	
__init__(gradf, step0=0.0005)

	Initialize a new instance.

	Parameters:	gradf : Operator

The gradient of the objective function at a point

step0 : float, optional

Initial step length parameter

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	scalar

 	steplen

 	BarzilaiBorweinStep

BarzilaiBorweinStep.__call__

	
BarzilaiBorweinStep.__call__(x, x0)

	Calculate the step length at a point.

	Parameters:	x : Operator.domain element

The current point

x0 : Operator.domain element

The previous point

	Returns:	step : float

The step length

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	scalar

 	steplen

ConstantLineSearch

	
class odl.solvers.scalar.steplen.ConstantLineSearch(constant)

	Bases: odl.solvers.scalar.steplen.LineSearch

Line search object that returns a constant step length.

Methods

	__call__(x,direction,dir_derivative)
	Calculate the step length at a point.

	__eq__
	Return self==value.

	
__init__(constant)

	Initialize a new instance.

	Parameters:	constant : float

The constant step length

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	scalar

 	steplen

 	ConstantLineSearch

ConstantLineSearch.__call__

	
ConstantLineSearch.__call__(x, direction, dir_derivative)

	Calculate the step length at a point.

	Parameters:	x : Operator.domain element

The current point

direction : Operator.domain element

Search direction in which the line search should be computed

dir_derivative : float

Directional derivative along the direction

	Returns:	step : float

The constant step length

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	scalar

 	steplen

LineSearch

	
class odl.solvers.scalar.steplen.LineSearch

	Bases: object

Abstract base class for line search step length methods.

Methods

	__call__(x,direction,dir_derivative)
	Calculate step length in direction.

	__eq__
	Return self==value.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	scalar

 	steplen

 	LineSearch

LineSearch.__call__

	
LineSearch.__call__(x, direction, dir_derivative)

	Calculate step length in direction.

	Parameters:	x : Operator.domain element

The current point

direction : Operator.domain element

Search direction in which the line search should be computed

dir_derivative : float

Directional derivative along the direction

	Returns:	step : float

The step length

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	scalar

 	steplen

StepLength

	
class odl.solvers.scalar.steplen.StepLength

	Bases: object

Abstract base class for step length methods.

Methods

	__call__(x,direction,dir_derivative)
	Calculate the step length at a point.

	__eq__
	Return self==value.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	scalar

 	steplen

 	StepLength

StepLength.__call__

	
StepLength.__call__(x, direction, dir_derivative)

	Calculate the step length at a point.

	Parameters:	x : Operator.domain element

The current point

direction : Operator.domain element

Search direction in which the line search should be computed

dir_derivative : float

Directional derivative along the direction

	Returns:	step : float

The step length

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

util

Modules

	partial
	AndPartial

	ForEachPartial

	Partial

	PrintIterationPartial

	PrintNormPartial

	PrintTimingPartial

	ShowPartial

	StorePartial

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	util

partial

Partial objects for per-iterate actions in iterative methods.

Classes

	AndPartial(*partials)
	Partial used for combining several partials

	ForEachPartial(function)
	Simple object for applying a function to each iterate.

	Partial
	Abstract base class for sending partial results of iterations.

	PrintIterationPartial([text])
	Print the iteration count.

	PrintNormPartial()
	Print the current norm.

	PrintTimingPartial()
	Print the time elapsed since the previous iteration.

	ShowPartial(**kwargs)
	Show the partial result.

	StorePartial([results])
	Simple object for storing all partial results of the solvers.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	util

 	partial

AndPartial

	
class odl.solvers.util.partial.AndPartial(*partials)

	Bases: odl.solvers.util.partial.Partial

Partial used for combining several partials

Methods

	__call__(result)
	Apply all partials to result.

	__eq__
	Return self==value.

	
__init__(*partials)

	Initialize an instance.

	Parameters:	*partials : Partial‘s

Partials to be called in sequence as listed.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	util

 	partial

 	AndPartial

AndPartial.__call__

	
AndPartial.__call__(result)

	Apply all partials to result.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	util

 	partial

ForEachPartial

	
class odl.solvers.util.partial.ForEachPartial(function)

	Bases: odl.solvers.util.partial.Partial

Simple object for applying a function to each iterate.

Methods

	__call__(result)
	Apply function to result.

	__eq__
	Return self==value.

	
__init__(function)

	Initialize an instance.

	Parameters:	function : callable

Function to call for each iteration

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	util

 	partial

 	ForEachPartial

ForEachPartial.__call__

	
ForEachPartial.__call__(result)

	Apply function to result.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	util

 	partial

Partial

	
class odl.solvers.util.partial.Partial

	Bases: object

Abstract base class for sending partial results of iterations.

Methods

	__call__(result)
	Apply the partial object to result.

	__eq__
	Return self==value.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	util

 	partial

 	Partial

Partial.__call__

	
Partial.__call__(result)

	Apply the partial object to result.

	Parameters:	result : LinearSpaceVector

Partial result after n iterations

	Returns:	None

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	util

 	partial

PrintIterationPartial

	
class odl.solvers.util.partial.PrintIterationPartial(text=None)

	Bases: odl.solvers.util.partial.Partial

Print the iteration count.

Methods

	__call__(_)
	Print the current iteration.

	__eq__
	Return self==value.

	
__init__(text=None)

	Initialize an instance.

	Parameters:	text : str

Text to display before the iteration count. Default: ‘iter =’

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	util

 	partial

 	PrintIterationPartial

PrintIterationPartial.__call__

	
PrintIterationPartial.__call__(_)

	Print the current iteration.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	util

 	partial

PrintNormPartial

	
class odl.solvers.util.partial.PrintNormPartial

	Bases: odl.solvers.util.partial.Partial

Print the current norm.

Methods

	__call__(result)
	Print the current norm.

	__eq__
	Return self==value.

	
__init__()

	Initialize an instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	util

 	partial

 	PrintNormPartial

PrintNormPartial.__call__

	
PrintNormPartial.__call__(result)

	Print the current norm.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	util

 	partial

PrintTimingPartial

	
class odl.solvers.util.partial.PrintTimingPartial

	Bases: odl.solvers.util.partial.Partial

Print the time elapsed since the previous iteration.

Methods

	__call__(_)
	Print time elapsed from the previous iteration.

	__eq__
	Return self==value.

	
__init__()

	Initialize an instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	util

 	partial

 	PrintTimingPartial

PrintTimingPartial.__call__

	
PrintTimingPartial.__call__(_)

	Print time elapsed from the previous iteration.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	util

 	partial

ShowPartial

	
class odl.solvers.util.partial.ShowPartial(**kwargs)

	Bases: odl.solvers.util.partial.Partial

Show the partial result.

Methods

	__call__(x)
	Show the current iterate.

	__eq__
	Return self==value.

	
__init__(**kwargs)

	Initialize a new instance.

Parameters are passed through to the vectors show method. Additional
parameters included.

	Parameters:	display_step : positive int, optional

Number of iterations between plots. Default: 1

	Other Parameters:

		kwargs :

Optional arguments passed on to x.show

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	util

 	partial

 	ShowPartial

ShowPartial.__call__

	
ShowPartial.__call__(x)

	Show the current iterate.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	util

 	partial

StorePartial

	
class odl.solvers.util.partial.StorePartial(results=None)

	Bases: odl.solvers.util.partial.Partial

Simple object for storing all partial results of the solvers.

Attributes

	results
	The partial results.

Methods

	__call__(result)
	Append result to results list.

	__eq__
	Return self==value.

	__getitem__(index)
	Get partial result.

	
__init__(results=None)

	Initialize an instance.

	Parameters:	results : list

List in which to store the partial results.
Default: new list ([])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	util

 	partial

 	StorePartial

StorePartial.results

	
StorePartial.results

	The partial results.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	solvers

 	util

 	partial

 	StorePartial

StorePartial.__call__

	
StorePartial.__call__(result)

	Append result to results list.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	solvers

 	util

 	partial

 	StorePartial

StorePartial.__getitem__

	
StorePartial.__getitem__(index)

	Get partial result.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

vector

Modules

	newton
	newtons_method

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	vector

newton

Newton type optimization schemes.

Functions

	newtons_method(op,x,line_search[,...])
	Newton’s method for solving a system of equations.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	solvers

 	vector

 	newton

newtons_method

	
odl.solvers.vector.newton.newtons_method(op, x, line_search, num_iter=10, cg_iter=None, partial=None)

	Newton’s method for solving a system of equations.

This is a general and optimized implementation of Newton’s method
for solving the problem:

f(x) = 0

of finding a root of a function.

The algorithm is well-known and there is a vast literature about it.
Among others, the method is described in [BV2004], Sections 9.5
and 10.2 (book available online [http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf]),
[GNS2009], Section 2.7 for solving nonlinear equations and Section
11.3 for its use in minimization, and wikipedia on Newton’s_method [https://en.wikipedia.org/wiki/Newton’s_method].

	Parameters:	op : Operator

Gradient of the objective function, x --> grad f(x)

x : element in the domain of op

Starting point of the iteration

line_search : LineSearch

Strategy to choose the step length

num_iter : int, optional

Number of iterations

cg_iter : int, optional

Number of iterations in the the conjugate gradient solver,
for computing the search direction.

partial : Partial, optional

Object executing code per iteration, e.g. plotting each iterate

Notes

The algorithm works by iteratively solving

[image: \partial f(x_k)p_k = -f(x_k)]

and then updating as

[image: x_{k+1} = x_k + \alpha x_k],

where [image: \alpha] is a suitable step length (see the
references). In this implementation the system of equations are
solved using the conjugate gradient method.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

space

Concrete vector spaces.

Modules

	base_ntuples
	FnBase

	FnBaseVector

	FnWeightingBase

	NtuplesBase

	NtuplesBaseVector

	cu_ntuples
	CudaFn

	CudaFnConstWeighting

	CudaFnCustomDist

	CudaFnCustomInnerProduct

	CudaFnCustomNorm

	CudaFnNoWeighting

	CudaFnVector

	CudaFnVectorWeighting

	CudaNtuples

	CudaNtuplesVector

	CudaRn

	cu_weighted_dist

	cu_weighted_inner

	cu_weighted_norm

	fspace
	FunctionSet

	FunctionSetVector

	FunctionSpace

	FunctionSpaceVector

	ntuples
	Fn

	FnConstWeighting

	FnCustomDist

	FnCustomInnerProduct

	FnCustomNorm

	FnMatrixWeighting

	FnNoWeighting

	FnVector

	FnVectorWeighting

	MatVecOperator

	Ntuples

	NtuplesVector

	Cn

	Rn

	weighted_dist

	weighted_inner

	weighted_norm

	space_utils
	vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

base_ntuples

Base classes for implementation of n-tuples.

Classes

	FnBase(size,dtype)
	Base class for [image: F^n] independent of implementation.

	FnBaseVector(space,*args,**kwargs)
	Abstract class for representation of FnBase vectors.

	FnWeightingBase(impl[,exponent,...])
	Abstract base class for weighting of FnBase spaces.

	NtuplesBase(size,dtype)
	Base class for sets of n-tuples independent of implementation.

	NtuplesBaseVector(space,*args,**kwargs)
	Abstract class for representation of NtuplesBase elements.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

FnBase

	
class odl.space.base_ntuples.FnBase(size, dtype)

	Bases: odl.space.base_ntuples.NtuplesBase, odl.set.space.LinearSpace

Base class for [image: F^n] independent of implementation.

Attributes

	dtype
	The data type of each entry.

	element_type
	FnBaseVector

	field
	The field of this vector space.

	is_cn
	Return True if the space represents C^n, i.e.

	is_rn
	Return True if the space represents R^n, i.e.

	shape
	The shape of this space.

	size
	The number of entries per tuple.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	_dist(x1,x2)
	Calculate the distance between x1 and x2.

	_divide(x1,x2,out)
	The entry-wise division of two vectors, assigned to out.

	_inner(x1,x2)
	Calculate the inner product of x1 and x2.

	_lincomb(a,x1,b,x2,out)
	Calculate out = a*x1 + b*x2.

	_multiply(x1,x2,out)
	The entry-wise product of two vectors, assigned to out.

	_norm(x)
	Calculate the norm of x.

	astype(dtype)
	Return a copy of this space with new dtype.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	dist(x1,x2)
	Calculate the distance between two vectors.

	divide(x1,x2[,out])
	Calculate the pointwise division of x1 and x2

	element([inp])
	Create a LinearSpaceVector from inp or from scratch.

	inner(x1,x2)
	Calculate the inner product of x1 and x2.

	lincomb(a,x1[,b,x2,out])
	Linear combination of vectors.

	multiply(x1,x2[,out])
	Calculate the pointwise product of x1 and x2.

	norm(x)
	Calculate the norm of a vector.

	one()
	Create a vector of ones.

	zero()
	Create a vector of zeros.

	
__init__(size, dtype)

	Initialize a new instance.

	Parameters:	size : int

The number of dimensions of the space

dtype : object

The data type of the storage array. Can be provided in any
way the numpy.dtype function understands, most notably
as built-in type, as one of NumPy’s internal datatype
objects or as string.
Only scalar data types (numbers) are allowed.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.dtype

	
FnBase.dtype

	The data type of each entry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.element_type

	
FnBase.element_type

	FnBaseVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.field

	
FnBase.field

	The field of this vector space.

The field is the set of scalars of the space, that is numbers that
the vectors in the space can be multiplied with.

	Returns:	field : Field

The underlying field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.is_cn

	
FnBase.is_cn

	Return True if the space represents C^n, i.e. complex tuples.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.is_rn

	
FnBase.is_rn

	Return True if the space represents R^n, i.e. real tuples.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.shape

	
FnBase.shape

	The shape of this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.size

	
FnBase.size

	The number of entries per tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.__contains__

	
FnBase.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is an NtuplesBaseVector instance and
other.space is equal to this space, False otherwise.

Examples

>>> from odl import Ntuples
>>> long_3 = Ntuples(3, dtype='int64')
>>> long_3.element() in long_3
True
>>> long_3.element() in Ntuples(3, dtype='int32')
False
>>> long_3.element() in Ntuples(3, dtype='float64')
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.__eq__

	
FnBase.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is an instance of this space’s type
with the same size and dtype, otherwise False.

Examples

>>> from odl import Ntuples
>>> int_3 = Ntuples(3, dtype=int)
>>> int_3 == int_3
True

Equality is not identity:

>>> int_3a, int_3b = Ntuples(3, int), Ntuples(3, int)
>>> int_3a == int_3b
True
>>> int_3a is int_3b
False

>>> int_3, int_4 = Ntuples(3, int), Ntuples(4, int)
>>> int_3 == int_4
False
>>> int_3, str_3 = Ntuples(3, 'int'), Ntuples(3, 'S2')
>>> int_3 == str_3
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase._dist

	
FnBase._dist(x1, x2)

	Calculate the distance between x1 and x2.

This method is intended to be private, public callers should
resort to dist which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase._divide

	
FnBase._divide(x1, x2, out)

	The entry-wise division of two vectors, assigned to out.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase._inner

	
FnBase._inner(x1, x2)

	Calculate the inner product of x1 and x2.

This method is intended to be private, public callers should
resort to inner which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase._lincomb

	
FnBase._lincomb(a, x1, b, x2, out)

	Calculate out = a*x1 + b*x2.

This method is intended to be private, public callers should
resort to lincomb which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase._multiply

	
FnBase._multiply(x1, x2, out)

	The entry-wise product of two vectors, assigned to out.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase._norm

	
FnBase._norm(x)

	Calculate the norm of x.

This method is intended to be private, public callers should
resort to norm which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.astype

	
FnBase.astype(dtype)

	Return a copy of this space with new dtype.

	Parameters:	dtype :

Data type of the returned space. Can be given in any way
numpy.dtype understands, e.g. as string (‘complex64’)
or data type (complex).

	Returns:	newspace : FnBase

The version of this space with given data type

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.contains_all

	
FnBase.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.contains_set

	
FnBase.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.dist

	
FnBase.dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : LinearSpaceVector

Vectors whose distance to compute

	Returns:	dist : float

Distance between vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.divide

	
FnBase.divide(x1, x2, out=None)

	Calculate the pointwise division of x1 and x2

	Parameters:	x1 : LinearSpaceVector

The dividend

x2 : LinearSpaceVector

The divisor

out : LinearSpaceVector, optional

Vector to write the ratio to

	Returns:	out : LinearSpaceVector

Ratio of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.element

	
FnBase.element(inp=None, **kwargs)

	Create a LinearSpaceVector from inp or from scratch.

If called without inp argument, an arbitrary element of the
space is generated without guarantee of its state.

	Parameters:	inp : optional

Input data from which to create the element

kwargs :

Optional further arguments

	Returns:	element : LinearSpaceVector

A vector in this space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.inner

	
FnBase.inner(x1, x2)

	Calculate the inner product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Factors in the inner product

	Returns:	out : LinearSpace.field element

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.lincomb

	
FnBase.lincomb(a, x1, b=None, x2=None, out=None)

	Linear combination of vectors.

Calculates

out = a * x1

or, if b and y are given,

out = a*x1 + b*x2

with error checking of types.

	Parameters:	a : Scalar in the field of this space

Scalar to multiply x1 with.

x1 : LinearSpaceVector

The first of the summands

b : Scalar, optional

Scalar to multiply x2 with.

x2 : LinearSpaceVector, optional

The second of the summands

out : LinearSpaceVector, optional

The Vector that the result should be written to.

	Returns:	out : LinearSpaceVector

Result of the linear combination. If out was provided,
the returned object is a reference to it.

Notes

The vectors out, x1 and x2 may be aligned, thus a call

space.lincomb(x, 2, x, 3.14, out=x)

is (mathematically) equivalent to

x = x * (1 + 2 + 3.14)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.multiply

	
FnBase.multiply(x1, x2, out=None)

	Calculate the pointwise product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Multiplicands in the product

out : LinearSpaceVector, optional

Vector to write the product to

	Returns:	out : LinearSpaceVector

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.norm

	
FnBase.norm(x)

	Calculate the norm of a vector.

	Parameters:	x : LinearSpaceVector

The vector

	Returns:	out : float

Norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.one

	
FnBase.one()

	Create a vector of ones.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBase

FnBase.zero

	
FnBase.zero()

	Create a vector of zeros.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

FnBaseVector

	
class odl.space.base_ntuples.FnBaseVector(space, *args, **kwargs)

	Bases: odl.space.base_ntuples.NtuplesBaseVector, odl.set.space.LinearSpaceVector

Abstract class for representation of FnBase vectors.

Defines abstract attributes and concrete ones which are
independent of data representation.

Attributes

	T
	The transpose of a vector, the functional given by (.

	dtype
	Length of this vector, equal to space size.

	itemsize
	The size in bytes on one element of this type.

	nbytes
	The number of bytes this vector uses in memory.

	ndim
	Number of dimensions, always 1.

	shape
	Number of entries per axis, equals (size,) for linear storage.

	size
	Length of this vector, equal to space size.

	space
	Space to which this vector.

	ufunc
	NtuplesBaseUFuncs, access to numpy style ufuncs.

Methods

	__eq__(other)
	

	__getitem__(indices)
	Access values of this vector.

	__setitem__(indices,values)
	Set values of this vector.

	asarray([start,stop,step,out])
	Extract the data of this array as a numpy array.

	assign(other)
	Assign the values of other to self.

	copy()
	

	dist(other)
	Distance to other.

	divide(x,y)
	Divide by other inplace.

	inner(other)
	Inner product with other.

	lincomb(a,x1[,b,x2])
	Assign a linear combination to this vector.

	multiply(x,y)
	Multiply by other inplace.

	norm()
	Norm of vector

	set_zero()
	Set this vector to zero.

	show([title,method,show,fig])
	Display the function graphically.

	
__init__(space, *args, **kwargs)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.T

	
FnBaseVector.T

	The transpose of a vector, the functional given by (. , self)

	Returns:	transpose : InnerProductOperator

Notes

This function is only defined in inner product spaces.

In a complex space, this takes the conjugate transpose of
the vector.

Examples

>>> from odl import Rn
>>> import numpy as np
>>> rn = Rn(3)
>>> x = rn.element([1, 2, 3])
>>> y = rn.element([2, 1, 3])
>>> x.T(y)
13.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.dtype

	
FnBaseVector.dtype

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.itemsize

	
FnBaseVector.itemsize

	The size in bytes on one element of this type.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.nbytes

	
FnBaseVector.nbytes

	The number of bytes this vector uses in memory.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.ndim

	
FnBaseVector.ndim

	Number of dimensions, always 1.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.shape

	
FnBaseVector.shape

	Number of entries per axis, equals (size,) for linear storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.size

	
FnBaseVector.size

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.space

	
FnBaseVector.space

	Space to which this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.ufunc

	
FnBaseVector.ufunc

	NtuplesBaseUFuncs, access to numpy style ufuncs.

These are always available, but may or may not be optimized for
the specific space in use.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.__eq__

	
FnBaseVector.__eq__(other)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.__getitem__

	
FnBaseVector.__getitem__(indices)

	Access values of this vector.

	Parameters:	indices : int or slice

The position(s) that should be accessed

	Returns:	values : NtuplesBase.dtype or NtuplesBaseVector

The value(s) at the index (indices)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.__setitem__

	
FnBaseVector.__setitem__(indices, values)

	Set values of this vector.

	Parameters:	indices : int or slice

The position(s) that should be set

values : scalar, array-like or NtuplesBaseVector

The value(s) that are to be assigned.

If index is an integer, value must be single value.

If index is a slice, value must be broadcastable
to the size of the slice (same size, shape (1,)
or single value).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.asarray

	
FnBaseVector.asarray(start=None, stop=None, step=None, out=None)

	Extract the data of this array as a numpy array.

	Parameters:	start : int, optional

Start position. None means the first element.

start : int, optional

One element past the last element to be extracted.
None means the last element.

start : int, optional

Step length. None means 1.

out : numpy.ndarray

Array to write result to.

	Returns:	asarray : numpy.ndarray

Numpy array of the same type as the space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.assign

	
FnBaseVector.assign(other)

	Assign the values of other to self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.copy

	
FnBaseVector.copy()

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.dist

	
FnBaseVector.dist(other)

	Distance to other.

LinearSpace.dist

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.divide

	
FnBaseVector.divide(x, y)

	Divide by other inplace.

LinearSpace.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.inner

	
FnBaseVector.inner(other)

	Inner product with other.

LinearSpace.inner

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.lincomb

	
FnBaseVector.lincomb(a, x1, b=None, x2=None)

	Assign a linear combination to this vector.

Implemented as space.lincomb(a, x1, b, x2, out=self).

LinearSpace.lincomb

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.multiply

	
FnBaseVector.multiply(x, y)

	Multiply by other inplace.

LinearSpace.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.norm

	
FnBaseVector.norm()

	Norm of vector

LinearSpace.norm

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.set_zero

	
FnBaseVector.set_zero()

	Set this vector to zero.

LinearSpace.zero

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnBaseVector

FnBaseVector.show

	
FnBaseVector.show(title=None, method='scatter', show=False, fig=None, **kwargs)

	Display the function graphically.

	Parameters:	title : str, optional

Set the title of the figure

method : str, optional

1d methods:

‘plot’ : graph plot

‘scatter’ : point plot

show : bool, optional

If the plot should be showed now or deferred until later.

fig : matplotlib.figure.Figure

The figure to show in. Expected to be of same “style”, as
the figure given by this function. The most common use case
is that fig is the return value from an earlier call to
this function.

kwargs : {‘figsize’, ‘saveto’, ...}

Extra keyword arguments passed on to display method
See the Matplotlib functions for documentation of extra
options.

	Returns:	fig : matplotlib.figure.Figure

The resulting figure. It is also shown to the user.

See also

	odl.util.graphics.show_discrete_data

	Underlying implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

FnWeightingBase

	
class odl.space.base_ntuples.FnWeightingBase(impl, exponent=2.0, dist_using_inner=False)

	Bases: object

Abstract base class for weighting of FnBase spaces.

This class and its subclasses serve as a simple means to evaluate
and compare weighted inner products, norms and metrics semantically
rather than by identity on a pure function level.

The functions are implemented similarly to Operator,
but without extra type checks of input parameters - this is done in
the callers of the LinearSpace instance where these
functions used.

Attributes

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the distance between two vectors.

	equiv(other)
	Test if other is an equivalent inner product.

	inner(x1,x2)
	Calculate the inner product of two vectors.

	norm(x)
	Calculate the norm of a vector.

	
__init__(impl, exponent=2.0, dist_using_inner=False)

	Initialize a new instance.

	Parameters:	impl : str

Specifier for the implementation backend

exponent : positive float

Exponent of the norm. For values other than 2.0, the inner
product is not defined.

dist_using_inner : bool, optional

Calculate dist using the formula

[image: \lVert x-y \rVert^2 = \lVert x \rVert^2 + \lVert y \rVert^2 - 2\Re \langle x, y \rangle].

This avoids the creation of new arrays and is thus faster
for large arrays. On the downside, it will not evaluate to
exactly zero for equal (but not identical) [image: x] and
[image: y].

This option can only be used if exponent is 2.0.

Default: False.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnWeightingBase

FnWeightingBase.exponent

	
FnWeightingBase.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnWeightingBase

FnWeightingBase.impl

	
FnWeightingBase.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnWeightingBase

FnWeightingBase.__eq__

	
FnWeightingBase.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is a the same weighting, False
otherwise.

Notes

This operation must be computationally cheap, i.e. no large
arrays may be compared element-wise. That is the task of the
equiv method.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnWeightingBase

FnWeightingBase.dist

	
FnWeightingBase.dist(x1, x2)

	Calculate the distance between two vectors.

This is the standard implementation using norm.
Subclasses should override it for optimization purposes.

	Parameters:	x1, x2 : FnBaseVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnWeightingBase

FnWeightingBase.equiv

	
FnWeightingBase.equiv(other)

	Test if other is an equivalent inner product.

Should be overwritten, default tests for equality.

	Returns:	equivalent : bool

True if other is a FnWeightingBase instance which
yields the same result as this inner product for any
input, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnWeightingBase

FnWeightingBase.inner

	
FnWeightingBase.inner(x1, x2)

	Calculate the inner product of two vectors.

	Parameters:	x1, x2 : FnBaseVector

Vectors whose inner product is calculated

	Returns:	inner : float or complex

The inner product of the two provided vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	FnWeightingBase

FnWeightingBase.norm

	
FnWeightingBase.norm(x)

	Calculate the norm of a vector.

This is the standard implementation using inner.
Subclasses should override it for optimization purposes.

	Parameters:	x1 : FnBaseVector

Vector whose norm is calculated

	Returns:	norm : float

The norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

NtuplesBase

	
class odl.space.base_ntuples.NtuplesBase(size, dtype)

	Bases: odl.set.sets.Set

Base class for sets of n-tuples independent of implementation.

Attributes

	dtype
	The data type of each entry.

	element_type
	NtuplesBaseVector

	shape
	The shape of this space.

	size
	The number of entries per tuple.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	element([inp])
	Return an element from inp or from scratch.

	
__init__(size, dtype)

	Initialize a new instance.

	Parameters:	size : non-negative int

The number of entries per tuple

dtype :

The data type for each tuple entry. Can be provided in any
way the numpy.dtype function understands, most notably
as built-in type, as one of NumPy’s internal datatype
objects or as string.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBase

NtuplesBase.dtype

	
NtuplesBase.dtype

	The data type of each entry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBase

NtuplesBase.element_type

	
NtuplesBase.element_type

	NtuplesBaseVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBase

NtuplesBase.shape

	
NtuplesBase.shape

	The shape of this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBase

NtuplesBase.size

	
NtuplesBase.size

	The number of entries per tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBase

NtuplesBase.__contains__

	
NtuplesBase.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is an NtuplesBaseVector instance and
other.space is equal to this space, False otherwise.

Examples

>>> from odl import Ntuples
>>> long_3 = Ntuples(3, dtype='int64')
>>> long_3.element() in long_3
True
>>> long_3.element() in Ntuples(3, dtype='int32')
False
>>> long_3.element() in Ntuples(3, dtype='float64')
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBase

NtuplesBase.__eq__

	
NtuplesBase.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is an instance of this space’s type
with the same size and dtype, otherwise False.

Examples

>>> from odl import Ntuples
>>> int_3 = Ntuples(3, dtype=int)
>>> int_3 == int_3
True

Equality is not identity:

>>> int_3a, int_3b = Ntuples(3, int), Ntuples(3, int)
>>> int_3a == int_3b
True
>>> int_3a is int_3b
False

>>> int_3, int_4 = Ntuples(3, int), Ntuples(4, int)
>>> int_3 == int_4
False
>>> int_3, str_3 = Ntuples(3, 'int'), Ntuples(3, 'S2')
>>> int_3 == str_3
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBase

NtuplesBase.contains_all

	
NtuplesBase.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBase

NtuplesBase.contains_set

	
NtuplesBase.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBase

NtuplesBase.element

	
NtuplesBase.element(inp=None)

	Return an element from inp or from scratch.

Implementing this method is optional.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

NtuplesBaseVector

	
class odl.space.base_ntuples.NtuplesBaseVector(space, *args, **kwargs)

	Bases: object

Abstract class for representation of NtuplesBase elements.

Defines abstract attributes and concrete ones which are
independent of data representation.

Attributes

	dtype
	Length of this vector, equal to space size.

	itemsize
	The size in bytes on one element of this type.

	nbytes
	The number of bytes this vector uses in memory.

	ndim
	Number of dimensions, always 1.

	shape
	Number of entries per axis, equals (size,) for linear storage.

	size
	Length of this vector, equal to space size.

	space
	Space to which this vector.

	ufunc
	NtuplesBaseUFuncs, access to numpy style ufuncs.

Methods

	__eq__(other)
	Return self == other.

	__getitem__(indices)
	Access values of this vector.

	__setitem__(indices,values)
	Set values of this vector.

	asarray([start,stop,step,out])
	Extract the data of this array as a numpy array.

	copy()
	Create an identical (deep) copy of this vector.

	show([title,method,show,fig])
	Display the function graphically.

	
__init__(space, *args, **kwargs)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.dtype

	
NtuplesBaseVector.dtype

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.itemsize

	
NtuplesBaseVector.itemsize

	The size in bytes on one element of this type.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.nbytes

	
NtuplesBaseVector.nbytes

	The number of bytes this vector uses in memory.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.ndim

	
NtuplesBaseVector.ndim

	Number of dimensions, always 1.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.shape

	
NtuplesBaseVector.shape

	Number of entries per axis, equals (size,) for linear storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.size

	
NtuplesBaseVector.size

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.space

	
NtuplesBaseVector.space

	Space to which this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.ufunc

	
NtuplesBaseVector.ufunc

	NtuplesBaseUFuncs, access to numpy style ufuncs.

These are always available, but may or may not be optimized for
the specific space in use.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.__eq__

	
NtuplesBaseVector.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if all entries of other are equal to this
vector’s entries, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.__getitem__

	
NtuplesBaseVector.__getitem__(indices)

	Access values of this vector.

	Parameters:	indices : int or slice

The position(s) that should be accessed

	Returns:	values : NtuplesBase.dtype or NtuplesBaseVector

The value(s) at the index (indices)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.__setitem__

	
NtuplesBaseVector.__setitem__(indices, values)

	Set values of this vector.

	Parameters:	indices : int or slice

The position(s) that should be set

values : scalar, array-like or NtuplesBaseVector

The value(s) that are to be assigned.

If index is an integer, value must be single value.

If index is a slice, value must be broadcastable
to the size of the slice (same size, shape (1,)
or single value).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.asarray

	
NtuplesBaseVector.asarray(start=None, stop=None, step=None, out=None)

	Extract the data of this array as a numpy array.

	Parameters:	start : int, optional

Start position. None means the first element.

start : int, optional

One element past the last element to be extracted.
None means the last element.

start : int, optional

Step length. None means 1.

out : numpy.ndarray

Array to write result to.

	Returns:	asarray : numpy.ndarray

Numpy array of the same type as the space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.copy

	
NtuplesBaseVector.copy()

	Create an identical (deep) copy of this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	base_ntuples

 	NtuplesBaseVector

NtuplesBaseVector.show

	
NtuplesBaseVector.show(title=None, method='scatter', show=False, fig=None, **kwargs)

	Display the function graphically.

	Parameters:	title : str, optional

Set the title of the figure

method : str, optional

1d methods:

‘plot’ : graph plot

‘scatter’ : point plot

show : bool, optional

If the plot should be showed now or deferred until later.

fig : matplotlib.figure.Figure

The figure to show in. Expected to be of same “style”, as
the figure given by this function. The most common use case
is that fig is the return value from an earlier call to
this function.

kwargs : {‘figsize’, ‘saveto’, ...}

Extra keyword arguments passed on to display method
See the Matplotlib functions for documentation of extra
options.

	Returns:	fig : matplotlib.figure.Figure

The resulting figure. It is also shown to the user.

See also

	odl.util.graphics.show_discrete_data

	Underlying implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

cu_ntuples

CUDA implementation of n-dimensional Cartesian spaces.

Classes

	CudaFn(size,dtype,**kwargs)
	The space FnBase, implemented in CUDA.

	CudaFnConstWeighting(constant[,exponent])
	Weighting of CudaFn by a constant.

	CudaFnCustomDist(dist)
	Custom distance on CudaFn, removes norm and inner.

	CudaFnCustomInnerProduct(inner[,...])
	Custom inner product on CudaFn.

	CudaFnCustomNorm(norm)
	Custom norm on CudaFn, removes inner.

	CudaFnNoWeighting([exponent])
	Weighting of CudaFn with constant 1.

	CudaFnVector(space,data)
	Representation of a CudaFn element.

	CudaFnVectorWeighting(vector[,exponent])
	Vector weighting for CudaFn.

	CudaNtuples(size,dtype)
	The space NtuplesBase, implemented in CUDA.

	CudaNtuplesVector(space,data)
	Representation of a CudaNtuples element.

Functions

	CudaRn(size[,dtype])
	The real space [image: R^n], implemented in CUDA.

	cu_weighted_dist(weight[,exponent])
	Weighted distance on CudaFn spaces as free function.

	cu_weighted_inner(weight)
	Weighted inner product on CudaFn spaces as free function.

	cu_weighted_norm(weight[,exponent])
	Weighted norm on CudaFn spaces as free function.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaFn

	
class odl.space.cu_ntuples.CudaFn(size, dtype, **kwargs)

	Bases: odl.space.base_ntuples.FnBase, odl.space.cu_ntuples.CudaNtuples

The space FnBase, implemented in CUDA.

Requires the compiled ODL extension odlpp.

Attributes

	dtype
	The data type of each entry.

	element_type
	CudaFnVector

	exponent
	Exponent of the norm and distance.

	field
	The field of this vector space.

	is_cn
	Return True if the space represents C^n, i.e.

	is_rn
	Return True if the space represents R^n, i.e.

	is_weighted
	Return True if the weighting is not CudaFnNoWeighting.

	shape
	The shape of this space.

	size
	The number of entries per tuple.

	weighting
	This space’s weighting scheme.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	s.__eq__(other) <==> s == other.

	_dist(x1,x2)
	Calculate the distance between two vectors.

	_divide(x1,x2,out)
	The pointwise division of two vectors, assigned to out.

	_inner(x1,x2)
	Calculate the inner product of x and y.

	_lincomb(a,x1,b,x2,out)
	Linear combination of x1 and x2, assigned to out.

	_multiply(x1,x2,out)
	The pointwise product of two vectors, assigned to out.

	_norm(x)
	Calculate the norm of x.

	astype(dtype)
	Return a copy of this space with new dtype.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	default_dtype(field)
	Return the default of CudaFn data type for a given field.

	dist(x1,x2)
	Calculate the distance between two vectors.

	divide(x1,x2[,out])
	Calculate the pointwise division of x1 and x2

	element([inp,data_ptr])
	Create a new element.

	inner(x1,x2)
	Calculate the inner product of x1 and x2.

	lincomb(a,x1[,b,x2,out])
	Linear combination of vectors.

	multiply(x1,x2[,out])
	Calculate the pointwise product of x1 and x2.

	norm(x)
	Calculate the norm of a vector.

	one()
	Create a vector of ones.

	zero()
	Create a vector of zeros.

	
__init__(size, dtype, **kwargs)

	Initialize a new instance.

	Parameters:	size : positive int

The number of dimensions of the space

dtype : object

The data type of the storage array. Can be provided in any
way the numpy.dtype function understands, most notably
as built-in type, as one of NumPy’s internal datatype
objects or as string.

Only scalar data types are allowed.

weight : optional

Use weighted inner product, norm, and dist. The following
types are supported as weight:

FnWeightingBase :
Use this weighting as-is. Compatibility with this
space’s elements is not checked during init.

float :
Weighting by a constant

array-like :
Weighting by a vector (1-dim. array, corresponds to
a diagonal matrix). Note that the array is stored in
main memory, which results in slower space functions
due to a copy during evaluation.

CudaFnVector :
same as 1-dim. array-like, except that copying is
avoided if the dtype of the vector is the
same as this space’s dtype.

Default: no weighting

This option cannot be combined with dist, norm
or inner.

exponent : positive float, optional

Exponent of the norm. For values other than 2.0, no
inner product is defined.

This option is ignored if dist, norm or
inner is given.

Default: 2.0

dist : callable, optional

The distance function defining a metric on CudaFn.
It must accept two CudaFnVector arguments, return a
float and fulfill the following mathematical conditions
for any three vectors x, y, z:

	[image: d(x, y) = d(y, x)]

	[image: d(x, y) \geq 0]

	[image: d(x, y) = 0 \Leftrightarrow x = y]

	[image: d(x, y) \geq d(x, z) + d(z, y)]

By default, dist(x, y) is calculated as
norm(x - y). This creates an intermediate array
x-y, which can be
avoided by choosing dist_using_inner=True.

This option cannot be combined with weight,
norm or inner.

norm : callable, optional

The norm implementation. It must accept an
CudaFnVector argument, return a
float and satisfy the following
conditions for all vectors [image: x, y] and scalars
[image: s]:

	[image: \lVert x\rVert \geq 0]

	[image: \lVert x\rVert = 0 \Leftrightarrow x = 0]

	[image: \lVert s x\rVert = \lvert s \rvert \lVert x\rVert]

	[image: \lVert x + y\rVert \leq \lVert x\rVert + \lVert y\rVert].

By default, norm(x) is calculated as
inner(x, x).

This option cannot be combined with weight,
dist or inner.

inner : callable, optional

The inner product implementation. It must accept two
CudaFnVector arguments, return an element from
the field of the space (real or complex number) and
satisfy the following conditions for all vectors
[image: x, y, z] and scalars [image: s]:

	[image: \langle x,y\rangle = \overline{\langle y,x\rangle}]

	[image: \langle sx, y\rangle = s \langle x, y\rangle]

	[image: \langle x+z, y\rangle = \langle x,y\rangle + \langle z,y\rangle]

	[image: \langle x,x\rangle = 0 \Leftrightarrow x = 0]

This option cannot be combined with weight,
dist or norm.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.dtype

	
CudaFn.dtype

	The data type of each entry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.element_type

	
CudaFn.element_type

	CudaFnVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.exponent

	
CudaFn.exponent

	Exponent of the norm and distance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.field

	
CudaFn.field

	The field of this vector space.

The field is the set of scalars of the space, that is numbers that
the vectors in the space can be multiplied with.

	Returns:	field : Field

The underlying field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.is_cn

	
CudaFn.is_cn

	Return True if the space represents C^n, i.e. complex tuples.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.is_rn

	
CudaFn.is_rn

	Return True if the space represents R^n, i.e. real tuples.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.is_weighted

	
CudaFn.is_weighted

	Return True if the weighting is not CudaFnNoWeighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.shape

	
CudaFn.shape

	The shape of this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.size

	
CudaFn.size

	The number of entries per tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.weighting

	
CudaFn.weighting

	This space’s weighting scheme.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.__contains__

	
CudaFn.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is an NtuplesBaseVector instance and
other.space is equal to this space, False otherwise.

Examples

>>> from odl import Ntuples
>>> long_3 = Ntuples(3, dtype='int64')
>>> long_3.element() in long_3
True
>>> long_3.element() in Ntuples(3, dtype='int32')
False
>>> long_3.element() in Ntuples(3, dtype='float64')
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.__eq__

	
CudaFn.__eq__(other)

	s.__eq__(other) <==> s == other.

	Returns:	equals : bool

True if other is an instance of this space’s type
with the same size, dtype and space functions,
otherwise False.

Examples

>>> from numpy.linalg import norm
>>> def dist(x, y, ord):
... return norm(x - y, ord)

>>> from functools import partial
>>> dist2 = partial(dist, ord=2)
>>> r3 = CudaRn(3, dist=dist2)
>>> r3_same = CudaRn(3, dist=dist2)
>>> r3 == r3_same
True

Different dist functions result in different spaces - the
same applies for norm and inner:

>>> dist1 = partial(dist, ord=1)
>>> r3_1 = CudaRn(3, dist=dist1)
>>> r3_2 = CudaRn(3, dist=dist2)
>>> r3_1 == r3_2
False

Be careful with Lambdas - they result in non-identical function
objects:

>>> r3_lambda1 = CudaRn(3, dist=lambda x, y: norm(x-y, ord=1))
>>> r3_lambda2 = CudaRn(3, dist=lambda x, y: norm(x-y, ord=1))
>>> r3_lambda1 == r3_lambda2
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn._dist

	
CudaFn._dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : CudaFnVector

The vectors whose mutual distance is calculated

	Returns:	dist : float

Distance between the vectors

Examples

>>> r2 = CudaRn(2)
>>> x = r2.element([3, 8])
>>> y = r2.element([0, 4])
>>> r2.dist(x, y)
5.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn._divide

	
CudaFn._divide(x1, x2, out)

	The pointwise division of two vectors, assigned to out.

This is defined as:

multiply(z, x, y) := [x[0]/y[0], x[1]/y[1], ..., x[n-1]/y[n-1]]

	Parameters:	x1, x2 : CudaFnVector

Factors in the product

out : CudaFnVector

Element to which the result is written

	Returns:	None

Examples

>>> rn = CudaRn(3)
>>> x1 = rn.element([5, 3, 2])
>>> x2 = rn.element([1, 2, 2])
>>> out = rn.element()
>>> rn.divide(x1, x2, out) # out is returned
CudaRn(3).element([5.0, 1.5, 1.0])
>>> out
CudaRn(3).element([5.0, 1.5, 1.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn._inner

	
CudaFn._inner(x1, x2)

	Calculate the inner product of x and y.

	Parameters:	x1, x2 : CudaFnVector

	Returns:	inner: float or complex

The inner product of x and y

Examples

>>> uc3 = CudaFn(3, 'uint8')
>>> x = uc3.element([1, 2, 3])
>>> y = uc3.element([3, 1, 5])
>>> uc3.inner(x, y)
20.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn._lincomb

	
CudaFn._lincomb(a, x1, b, x2, out)

	Linear combination of x1 and x2, assigned to out.

Calculate z = a * x + b * y using optimized CUDA routines.

	Parameters:	a, b : LinearSpace.field element

Scalar to multiply x and y with.

x, y : CudaFnVector

The summands

out : CudaFnVector

The Vector that the result is written to.

	Returns:	None

Examples

>>> r3 = CudaRn(3)
>>> x = r3.element([1, 2, 3])
>>> y = r3.element([4, 5, 6])
>>> out = r3.element()
>>> r3.lincomb(2, x, 3, y, out) # out is returned
CudaRn(3).element([14.0, 19.0, 24.0])
>>> out
CudaRn(3).element([14.0, 19.0, 24.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn._multiply

	
CudaFn._multiply(x1, x2, out)

	The pointwise product of two vectors, assigned to out.

This is defined as:

multiply(x, y, out) := [x[0]*y[0], x[1]*y[1], ..., x[n-1]*y[n-1]]

	Parameters:	x1, x2 : CudaFnVector

Factors in product

out : CudaFnVector

Element to which the result is written

	Returns:	None

Examples

>>> rn = CudaRn(3)
>>> x1 = rn.element([5, 3, 2])
>>> x2 = rn.element([1, 2, 3])
>>> out = rn.element()
>>> rn.multiply(x1, x2, out) # out is returned
CudaRn(3).element([5.0, 6.0, 6.0])
>>> out
CudaRn(3).element([5.0, 6.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn._norm

	
CudaFn._norm(x)

	Calculate the norm of x.

This method is implemented separately from sqrt(inner(x,x))
for efficiency reasons.

	Parameters:	x : CudaFnVector

	Returns:	norm : float

The norm of x

Examples

>>> uc3 = CudaFn(3, 'uint8')
>>> x = uc3.element([2, 3, 6])
>>> uc3.norm(x)
7.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.astype

	
CudaFn.astype(dtype)

	Return a copy of this space with new dtype.

	Parameters:	dtype :

Data type of the returned space. Can be given in any way
numpy.dtype understands, e.g. as string (‘complex64’)
or data type (complex).

	Returns:	newspace : FnBase

The version of this space with given data type

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.contains_all

	
CudaFn.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.contains_set

	
CudaFn.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.default_dtype

	
static CudaFn.default_dtype(field)

	Return the default of CudaFn data type for a given field.

	Parameters:	field : Field

Set of numbers to be represented by a data type.
Currently supported: RealNumbers.

	Returns:	dtype : type

Numpy data type specifier. The returned defaults are:

RealNumbers() : , np.dtype('float32')

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.dist

	
CudaFn.dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : LinearSpaceVector

Vectors whose distance to compute

	Returns:	dist : float

Distance between vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.divide

	
CudaFn.divide(x1, x2, out=None)

	Calculate the pointwise division of x1 and x2

	Parameters:	x1 : LinearSpaceVector

The dividend

x2 : LinearSpaceVector

The divisor

out : LinearSpaceVector, optional

Vector to write the ratio to

	Returns:	out : LinearSpaceVector

Ratio of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.element

	
CudaFn.element(inp=None, data_ptr=None)

	Create a new element.

	Parameters:	inp : array-like or scalar, optional

Input to initialize the new element.

If inp is a numpy.ndarray of shape (size,)
and the same data type as this space, the array is wrapped,
not copied.
Other array-like objects are copied (with broadcasting
if necessary).

If a single value is given, it is copied to all entries.

If both inp and data_ptr are None, an empty
element is created with no guarantee of its state
(memory allocation only).

data_ptr : int, optional

Memory address of a CUDA array container

Cannot be combined with inp.

	Returns:	element : CudaNtuplesVector

The new element

Notes

This method preserves “array views” of correct size and type,
see the examples below.

TODO: No, it does not yet!

Examples

>>> uc3 = CudaNtuples(3, 'uint8')
>>> x = uc3.element(np.array([1, 2, 3], dtype='uint8'))
>>> x
CudaNtuples(3, 'uint8').element([1, 2, 3])
>>> y = uc3.element([1, 2, 3])
>>> y
CudaNtuples(3, 'uint8').element([1, 2, 3])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.inner

	
CudaFn.inner(x1, x2)

	Calculate the inner product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Factors in the inner product

	Returns:	out : LinearSpace.field element

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.lincomb

	
CudaFn.lincomb(a, x1, b=None, x2=None, out=None)

	Linear combination of vectors.

Calculates

out = a * x1

or, if b and y are given,

out = a*x1 + b*x2

with error checking of types.

	Parameters:	a : Scalar in the field of this space

Scalar to multiply x1 with.

x1 : LinearSpaceVector

The first of the summands

b : Scalar, optional

Scalar to multiply x2 with.

x2 : LinearSpaceVector, optional

The second of the summands

out : LinearSpaceVector, optional

The Vector that the result should be written to.

	Returns:	out : LinearSpaceVector

Result of the linear combination. If out was provided,
the returned object is a reference to it.

Notes

The vectors out, x1 and x2 may be aligned, thus a call

space.lincomb(x, 2, x, 3.14, out=x)

is (mathematically) equivalent to

x = x * (1 + 2 + 3.14)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.multiply

	
CudaFn.multiply(x1, x2, out=None)

	Calculate the pointwise product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Multiplicands in the product

out : LinearSpaceVector, optional

Vector to write the product to

	Returns:	out : LinearSpaceVector

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.norm

	
CudaFn.norm(x)

	Calculate the norm of a vector.

	Parameters:	x : LinearSpaceVector

The vector

	Returns:	out : float

Norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.one

	
CudaFn.one()

	Create a vector of ones.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFn

CudaFn.zero

	
CudaFn.zero()

	Create a vector of zeros.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaFnConstWeighting

	
class odl.space.cu_ntuples.CudaFnConstWeighting(constant, exponent=2.0)

	Bases: odl.space.base_ntuples.FnWeightingBase

Weighting of CudaFn by a constant.

For exponent 2.0, a new weighted inner product with constant
[image: c] is defined as

[image: \langle a, b\rangle_c := c\ b^H a]

with [image: b^H] standing for transposed complex conjugate.

For other exponents, only norm and dist are defined. In the case of
exponent inf, the weighted norm is defined as

[image: \lVert a\rVert_{c, \infty} := c \lVert a\rVert_\infty],

otherwise it is

[image: \lVert a\rVert_{c, p} := c^{1/p} \lVert a\rVert_p].

Not that this definition does not fulfill the limit property
in [image: p], i.e.

[image: \lim_{p\to\infty} \lVert a\rVert_{c,p} = \lVert a\rVert_\infty \neq \lVert a\rVert_{c,\infty}]

unless [image: c = 1].

The constant [image: c] must be positive.

Attributes

	const
	Weighting constant of this inner product.

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the constant-weighted distance between two vectors.

	equiv(other)
	Test if other is an equivalent weighting.

	inner(x1,x2)
	Calculate the constant-weighted inner product of two vectors.

	norm(x)
	Calculate the constant-weighted norm of a vector.

	
__init__(constant, exponent=2.0)

	Initialize a new instance.

	Parameters:	constant : positive finite float

Weighting constant of the inner product.

exponent : positive float

Exponent of the norm. For values other than 2.0, the inner
product is not defined.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnConstWeighting

CudaFnConstWeighting.const

	
CudaFnConstWeighting.const

	Weighting constant of this inner product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnConstWeighting

CudaFnConstWeighting.exponent

	
CudaFnConstWeighting.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnConstWeighting

CudaFnConstWeighting.impl

	
CudaFnConstWeighting.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnConstWeighting

CudaFnConstWeighting.__eq__

	
CudaFnConstWeighting.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is a CudaFnConstWeighting
instance with the same constant, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnConstWeighting

CudaFnConstWeighting.dist

	
CudaFnConstWeighting.dist(x1, x2)

	Calculate the constant-weighted distance between two vectors.

	Parameters:	x1, x2 : CudaFnVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnConstWeighting

CudaFnConstWeighting.equiv

	
CudaFnConstWeighting.equiv(other)

	Test if other is an equivalent weighting.

	Returns:	equivalent : bool

True if other is a
FnWeightingBase instance
with the same
FnWeightingBase.impl,
which yields the same result as this inner product for any
input, False otherwise. This is the same as equality
if other is a CudaFnConstWeighting instance,
otherwise by entry-wise comparison of this inner product’s
constant with the matrix of other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnConstWeighting

CudaFnConstWeighting.inner

	
CudaFnConstWeighting.inner(x1, x2)

	Calculate the constant-weighted inner product of two vectors.

	Parameters:	x1, x2 : CudaFnVector

Vectors whose inner product is calculated

	Returns:	inner : float or complex

The inner product of the two vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnConstWeighting

CudaFnConstWeighting.norm

	
CudaFnConstWeighting.norm(x)

	Calculate the constant-weighted norm of a vector.

	Parameters:	x1 : CudaFnVector

Vector whose norm is calculated

	Returns:	norm : float

The norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaFnCustomDist

	
class odl.space.cu_ntuples.CudaFnCustomDist(dist)

	Bases: odl.space.base_ntuples.FnWeightingBase

Custom distance on CudaFn, removes norm and inner.

Attributes

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Custom distance of this instance..

	equiv(other)
	Test if other is an equivalent inner product.

	inner(x1,x2)
	Inner product is not defined for custom distance.

	norm(x)
	Norm is not defined for custom distance.

	
__init__(dist)

	Initialize a new instance.

	Parameters:	dist : callable

The distance function defining a metric on
[image: \mathbb{F}^n].
It must accept two CudaFnVector arguments and
fulfill the following mathematical conditions for any
three vectors [image: x, y, z]:

	[image: d(x, y) = d(y, x)]

	[image: d(x, y) \geq 0]

	[image: d(x, y) = 0 \Leftrightarrow x = y]

	[image: d(x, y) \geq d(x, z) + d(z, y)]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomDist

CudaFnCustomDist.exponent

	
CudaFnCustomDist.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomDist

CudaFnCustomDist.impl

	
CudaFnCustomDist.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomDist

CudaFnCustomDist.__eq__

	
CudaFnCustomDist.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is a CudaFnCustomDist
instance with the same norm, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomDist

CudaFnCustomDist.dist

	
CudaFnCustomDist.dist(x1, x2)

	Custom distance of this instance..

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomDist

CudaFnCustomDist.equiv

	
CudaFnCustomDist.equiv(other)

	Test if other is an equivalent inner product.

Should be overwritten, default tests for equality.

	Returns:	equivalent : bool

True if other is a FnWeightingBase instance which
yields the same result as this inner product for any
input, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomDist

CudaFnCustomDist.inner

	
CudaFnCustomDist.inner(x1, x2)

	Inner product is not defined for custom distance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomDist

CudaFnCustomDist.norm

	
CudaFnCustomDist.norm(x)

	Norm is not defined for custom distance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaFnCustomInnerProduct

	
class odl.space.cu_ntuples.CudaFnCustomInnerProduct(inner, dist_using_inner=True)

	Bases: odl.space.base_ntuples.FnWeightingBase

Custom inner product on CudaFn.

Attributes

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the distance between two vectors.

	equiv(other)
	Test if other is an equivalent inner product.

	inner(x1,x2)
	Custom inner product of this instance..

	norm(x)
	Calculate the norm of a vector.

	
__init__(inner, dist_using_inner=True)

	Initialize a new instance.

	Parameters:	inner : callable

The inner product implementation. It must accept two
CudaFnVector arguments, return a complex number
and satisfy the following conditions for all vectors
[image: x, y, z] and scalars [image: s]:

	[image: \langle x,y\rangle = \overline{\langle y,x\rangle}]

	[image: \langle sx, y\rangle = s \langle x, y\rangle]

	[image: \langle x+z, y\rangle = \langle x,y\rangle + \langle z,y\rangle]

	[image: \langle x,x\rangle = 0 \Leftrightarrow x = 0]

dist_using_inner : bool, optional

Calculate dist using the formula

[image: \lVert x-y \rVert^2 = \lVert x \rVert^2 + \lVert y \rVert^2 - 2\Re \langle x, y \rangle].

This avoids the creation of new arrays and is thus faster
for large arrays. On the downside, it will not evaluate to
exactly zero for equal (but not identical) [image: x] and
[image: y].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomInnerProduct

CudaFnCustomInnerProduct.exponent

	
CudaFnCustomInnerProduct.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomInnerProduct

CudaFnCustomInnerProduct.impl

	
CudaFnCustomInnerProduct.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomInnerProduct

CudaFnCustomInnerProduct.__eq__

	
CudaFnCustomInnerProduct.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is a CudaFnCustomInnerProduct
instance with the same inner product, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomInnerProduct

CudaFnCustomInnerProduct.dist

	
CudaFnCustomInnerProduct.dist(x1, x2)

	Calculate the distance between two vectors.

This is the standard implementation using norm.
Subclasses should override it for optimization purposes.

	Parameters:	x1, x2 : FnBaseVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomInnerProduct

CudaFnCustomInnerProduct.equiv

	
CudaFnCustomInnerProduct.equiv(other)

	Test if other is an equivalent inner product.

Should be overwritten, default tests for equality.

	Returns:	equivalent : bool

True if other is a FnWeightingBase instance which
yields the same result as this inner product for any
input, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomInnerProduct

CudaFnCustomInnerProduct.inner

	
CudaFnCustomInnerProduct.inner(x1, x2)

	Custom inner product of this instance..

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomInnerProduct

CudaFnCustomInnerProduct.norm

	
CudaFnCustomInnerProduct.norm(x)

	Calculate the norm of a vector.

This is the standard implementation using inner.
Subclasses should override it for optimization purposes.

	Parameters:	x1 : FnBaseVector

Vector whose norm is calculated

	Returns:	norm : float

The norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaFnCustomNorm

	
class odl.space.cu_ntuples.CudaFnCustomNorm(norm)

	Bases: odl.space.base_ntuples.FnWeightingBase

Custom norm on CudaFn, removes inner.

Attributes

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the distance between two vectors.

	equiv(other)
	Test if other is an equivalent inner product.

	inner(x1,x2)
	Inner product is not defined for custom distance.

	norm(x)
	Custom norm of this instance..

	
__init__(norm)

	Initialize a new instance.

	Parameters:	norm : callable

The norm implementation. It must accept an
CudaFnVector argument, return a float and
satisfy the following conditions for all vectors
[image: x, y] and scalars [image: s]:

	[image: \lVert x\rVert \geq 0]

	[image: \lVert x\rVert = 0 \Leftrightarrow x = 0]

	[image: \lVert s x\rVert = \lvert s \rvert \lVert x\rVert]

	[image: \lVert x + y\rVert \leq \lVert x\rVert + \lVert y\rVert].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomNorm

CudaFnCustomNorm.exponent

	
CudaFnCustomNorm.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomNorm

CudaFnCustomNorm.impl

	
CudaFnCustomNorm.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomNorm

CudaFnCustomNorm.__eq__

	
CudaFnCustomNorm.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is a CudaFnCustomNorm
instance with the same norm, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomNorm

CudaFnCustomNorm.dist

	
CudaFnCustomNorm.dist(x1, x2)

	Calculate the distance between two vectors.

This is the standard implementation using norm.
Subclasses should override it for optimization purposes.

	Parameters:	x1, x2 : FnBaseVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomNorm

CudaFnCustomNorm.equiv

	
CudaFnCustomNorm.equiv(other)

	Test if other is an equivalent inner product.

Should be overwritten, default tests for equality.

	Returns:	equivalent : bool

True if other is a FnWeightingBase instance which
yields the same result as this inner product for any
input, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomNorm

CudaFnCustomNorm.inner

	
CudaFnCustomNorm.inner(x1, x2)

	Inner product is not defined for custom distance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnCustomNorm

CudaFnCustomNorm.norm

	
CudaFnCustomNorm.norm(x)

	Custom norm of this instance..

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaFnNoWeighting

	
class odl.space.cu_ntuples.CudaFnNoWeighting(exponent=2.0)

	Bases: odl.space.cu_ntuples.CudaFnConstWeighting

Weighting of CudaFn with constant 1.

For exponent 2.0, the unweighted inner product is defined as

[image: \langle a, b\rangle := b^H a]

with [image: b^H] standing for transposed complex conjugate.

For other exponents, only norm and dist are defined.

Attributes

	const
	Weighting constant of this inner product.

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the constant-weighted distance between two vectors.

	equiv(other)
	Test if other is an equivalent weighting.

	inner(x1,x2)
	Calculate the constant-weighted inner product of two vectors.

	norm(x)
	Calculate the constant-weighted norm of a vector.

	
__init__(exponent=2.0)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnNoWeighting

CudaFnNoWeighting.const

	
CudaFnNoWeighting.const

	Weighting constant of this inner product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnNoWeighting

CudaFnNoWeighting.exponent

	
CudaFnNoWeighting.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnNoWeighting

CudaFnNoWeighting.impl

	
CudaFnNoWeighting.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnNoWeighting

CudaFnNoWeighting.__eq__

	
CudaFnNoWeighting.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is a CudaFnConstWeighting
instance with the same constant, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnNoWeighting

CudaFnNoWeighting.dist

	
CudaFnNoWeighting.dist(x1, x2)

	Calculate the constant-weighted distance between two vectors.

	Parameters:	x1, x2 : CudaFnVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnNoWeighting

CudaFnNoWeighting.equiv

	
CudaFnNoWeighting.equiv(other)

	Test if other is an equivalent weighting.

	Returns:	equivalent : bool

True if other is a
FnWeightingBase instance
with the same
FnWeightingBase.impl,
which yields the same result as this inner product for any
input, False otherwise. This is the same as equality
if other is a CudaFnConstWeighting instance,
otherwise by entry-wise comparison of this inner product’s
constant with the matrix of other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnNoWeighting

CudaFnNoWeighting.inner

	
CudaFnNoWeighting.inner(x1, x2)

	Calculate the constant-weighted inner product of two vectors.

	Parameters:	x1, x2 : CudaFnVector

Vectors whose inner product is calculated

	Returns:	inner : float or complex

The inner product of the two vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnNoWeighting

CudaFnNoWeighting.norm

	
CudaFnNoWeighting.norm(x)

	Calculate the constant-weighted norm of a vector.

	Parameters:	x1 : CudaFnVector

Vector whose norm is calculated

	Returns:	norm : float

The norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaFnVector

	
class odl.space.cu_ntuples.CudaFnVector(space, data)

	Bases: odl.space.base_ntuples.FnBaseVector, odl.space.cu_ntuples.CudaNtuplesVector

Representation of a CudaFn element.

Attributes

	T
	The transpose of a vector, the functional given by (.

	data
	The data of this vector.

	data_ptr
	A raw pointer to the data of this vector.

	dtype
	Length of this vector, equal to space size.

	itemsize
	The size in bytes on one element of this type.

	nbytes
	The number of bytes this vector uses in memory.

	ndim
	Number of dimensions, always 1.

	shape
	Number of entries per axis, equals (size,) for linear storage.

	size
	Length of this vector, equal to space size.

	space
	Space to which this vector.

	ufunc
	CudaNtuplesUFuncs, access to numpy style ufuncs.

Methods

	__eq__(other)
	

	__getitem__(indices)
	Access values of this vector.

	__setitem__(indices,values)
	Set values of this vector.

	asarray([start,stop,step,out])
	Extract the data of this array as a numpy array.

	assign(other)
	Assign the values of other to self.

	copy()
	

	dist(other)
	Distance to other.

	divide(x,y)
	Divide by other inplace.

	inner(other)
	Inner product with other.

	lincomb(a,x1[,b,x2])
	Assign a linear combination to this vector.

	multiply(x,y)
	Multiply by other inplace.

	norm()
	Norm of vector

	set_zero()
	Set this vector to zero.

	show([title,method,show,fig])
	Display the function graphically.

	
__init__(space, data)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.T

	
CudaFnVector.T

	The transpose of a vector, the functional given by (. , self)

	Returns:	transpose : InnerProductOperator

Notes

This function is only defined in inner product spaces.

In a complex space, this takes the conjugate transpose of
the vector.

Examples

>>> from odl import Rn
>>> import numpy as np
>>> rn = Rn(3)
>>> x = rn.element([1, 2, 3])
>>> y = rn.element([2, 1, 3])
>>> x.T(y)
13.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.data

	
CudaFnVector.data

	The data of this vector.

	Parameters:	None

	Returns:	ptr : CudaFnVectorImpl

Underlying cuda data representation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.data_ptr

	
CudaFnVector.data_ptr

	A raw pointer to the data of this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.dtype

	
CudaFnVector.dtype

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.itemsize

	
CudaFnVector.itemsize

	The size in bytes on one element of this type.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.nbytes

	
CudaFnVector.nbytes

	The number of bytes this vector uses in memory.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.ndim

	
CudaFnVector.ndim

	Number of dimensions, always 1.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.shape

	
CudaFnVector.shape

	Number of entries per axis, equals (size,) for linear storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.size

	
CudaFnVector.size

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.space

	
CudaFnVector.space

	Space to which this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.ufunc

	
CudaFnVector.ufunc

	CudaNtuplesUFuncs, access to numpy style ufuncs.

See also

	odl.util.ufuncs.NtuplesBaseUFuncs

	Base class for ufuncs in NtuplesBase spaces.

Notes

Not all ufuncs are currently optimized, some use the default numpy
implementation. This can be improved in the future.

Examples

>>> r2 = CudaRn(2)
>>> x = r2.element([1, -2])
>>> x.ufunc.absolute()
CudaRn(2).element([1.0, 2.0])

These functions can also be used with broadcasting

>>> x.ufunc.add(3)
CudaRn(2).element([4.0, 1.0])

and non-space elements

>>> x.ufunc.subtract([3, 3])
CudaRn(2).element([-2.0, -5.0])

There is also support for various reductions (sum, prod, min, max)

>>> x.ufunc.sum()
-1.0

Also supports out parameter

>>> y = r2.element([3, 4])
>>> out = r2.element()
>>> result = x.ufunc.add(y, out=out)
>>> result
CudaRn(2).element([4.0, 2.0])
>>> result is out
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.__eq__

	
CudaFnVector.__eq__(other)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.__getitem__

	
CudaFnVector.__getitem__(indices)

	Access values of this vector.

This will cause the values to be copied to CPU
which is a slow operation.

	Parameters:	indices : int or slice

The position(s) that should be accessed

	Returns:	values : scalar or CudaNtuplesVector

The value(s) at the index (indices)

Examples

>>> uc3 = CudaNtuples(3, 'uint8')
>>> y = uc3.element([1, 2, 3])
>>> y[0]
1
>>> z = y[1:3]
>>> z
CudaNtuples(2, 'uint8').element([2, 3])
>>> y[::2]
CudaNtuples(2, 'uint8').element([1, 3])
>>> y[::-1]
CudaNtuples(3, 'uint8').element([3, 2, 1])

The returned value is a view, modifications are reflected
in the original data:

>>> z[:] = [4, 5]
>>> y
CudaNtuples(3, 'uint8').element([1, 4, 5])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.__setitem__

	
CudaFnVector.__setitem__(indices, values)

	Set values of this vector.

This will cause the values to be copied to CPU
which is a slow operation.

	Parameters:	indices : int or slice

The position(s) that should be set

values : scalar, array-like or CudaNtuplesVector

The value(s) that are to be assigned.

If index is an int, value must be single value.

If index is a slice, value must be broadcastable
to the size of the slice (same size, shape (1,)
or single value).

	Returns:	None

Examples

>>> uc3 = CudaNtuples(3, 'uint8')
>>> y = uc3.element([1, 2, 3])
>>> y[0] = 5
>>> y
CudaNtuples(3, 'uint8').element([5, 2, 3])
>>> y[1:3] = [7, 8]
>>> y
CudaNtuples(3, 'uint8').element([5, 7, 8])
>>> y[:] = np.array([0, 0, 0])
>>> y
CudaNtuples(3, 'uint8').element([0, 0, 0])

Scalar assignment

>>> y[:] = 5
>>> y
CudaNtuples(3, 'uint8').element([5, 5, 5])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.asarray

	
CudaFnVector.asarray(start=None, stop=None, step=None, out=None)

	Extract the data of this array as a numpy array.

	Parameters:	start : int, optional

Start position. None means the first element.

start : int, optional

One element past the last element to be extracted.
None means the last element.

start : int, optional

Step length. None means 1.

out : numpy.ndarray

Array in which the result should be written in-place.
Has to be contiguous and of the correct dtype.

	Returns:	asarray : numpy.ndarray

Numpy array of the same type as the space.

Examples

>>> uc3 = CudaNtuples(3, 'uint8')
>>> y = uc3.element([1, 2, 3])
>>> y.asarray()
array([1, 2, 3], dtype=uint8)
>>> y.asarray(1, 3)
array([2, 3], dtype=uint8)

Using the out parameter

>>> out = np.empty((3,), dtype='uint8')
>>> result = y.asarray(out=out)
>>> out
array([1, 2, 3], dtype=uint8)
>>> result is out
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.assign

	
CudaFnVector.assign(other)

	Assign the values of other to self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.copy

	
CudaFnVector.copy()

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.dist

	
CudaFnVector.dist(other)

	Distance to other.

LinearSpace.dist

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.divide

	
CudaFnVector.divide(x, y)

	Divide by other inplace.

LinearSpace.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.inner

	
CudaFnVector.inner(other)

	Inner product with other.

LinearSpace.inner

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.lincomb

	
CudaFnVector.lincomb(a, x1, b=None, x2=None)

	Assign a linear combination to this vector.

Implemented as space.lincomb(a, x1, b, x2, out=self).

LinearSpace.lincomb

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.multiply

	
CudaFnVector.multiply(x, y)

	Multiply by other inplace.

LinearSpace.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.norm

	
CudaFnVector.norm()

	Norm of vector

LinearSpace.norm

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.set_zero

	
CudaFnVector.set_zero()

	Set this vector to zero.

LinearSpace.zero

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVector

CudaFnVector.show

	
CudaFnVector.show(title=None, method='scatter', show=False, fig=None, **kwargs)

	Display the function graphically.

	Parameters:	title : str, optional

Set the title of the figure

method : str, optional

1d methods:

‘plot’ : graph plot

‘scatter’ : point plot

show : bool, optional

If the plot should be showed now or deferred until later.

fig : matplotlib.figure.Figure

The figure to show in. Expected to be of same “style”, as
the figure given by this function. The most common use case
is that fig is the return value from an earlier call to
this function.

kwargs : {‘figsize’, ‘saveto’, ...}

Extra keyword arguments passed on to display method
See the Matplotlib functions for documentation of extra
options.

	Returns:	fig : matplotlib.figure.Figure

The resulting figure. It is also shown to the user.

See also

	odl.util.graphics.show_discrete_data

	Underlying implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaFnVectorWeighting

	
class odl.space.cu_ntuples.CudaFnVectorWeighting(vector, exponent=2.0)

	Bases: odl.space.base_ntuples.FnWeightingBase

Vector weighting for CudaFn.

For exponent 2.0, a new weighted inner product with vector [image: w]
is defined as

[image: \langle a, b\rangle_w := b^H (w \odot a)]

with [image: b^H] standing for transposed complex conjugate, and
[image: w \odot a] being element-wise multiplication.

For other exponents, only norm and dist are defined. In the case of
exponent inf, the weighted norm is

[image: \lVert a\rVert_{w,\infty}:=\lVert w\odot a\rVert_\infty],

otherwise it is

[image: \lVert a\rVert_{w, p} := \lVert w^{1/p}\odot a\rVert_p].

Not that this definition does not fulfill the limit property
in [image: p], i.e.

[image: \lim_{p\to\infty} \lVert a\rVert_{w,p} = \lVert a\rVert_\infty \neq \lVert a\rVert_{w,\infty}]

unless [image: w = (1,\dots,1)].

The vector may only have positive entries, otherwise it does not
define an inner product or norm, respectively. This is not checked
during initialization.

Attributes

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

	vector
	Weighting vector of this inner product.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the vector-weighted distance between two vectors.

	equiv(other)
	Test if other is an equivalent weighting.

	inner(x1,x2)
	Calculate the vector weighted inner product of two vectors.

	norm(x)
	Calculate the vector-weighted norm of a vector.

	vector_is_valid()
	Test if the vector is a valid weight, i.e.

	
__init__(vector, exponent=2.0)

	Initialize a new instance.

	Parameters:	vector : array-like, one-dim.

Weighting vector of the inner product

exponent : positive float

Exponent of the norm. For values other than 2.0, the inner
product is not defined.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVectorWeighting

CudaFnVectorWeighting.exponent

	
CudaFnVectorWeighting.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVectorWeighting

CudaFnVectorWeighting.impl

	
CudaFnVectorWeighting.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVectorWeighting

CudaFnVectorWeighting.vector

	
CudaFnVectorWeighting.vector

	Weighting vector of this inner product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVectorWeighting

CudaFnVectorWeighting.__eq__

	
CudaFnVectorWeighting.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is a CudaFnVectorWeighting
instance with identical vector, False otherwise.

See also

	equiv

	test for equivalent inner products

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVectorWeighting

CudaFnVectorWeighting.dist

	
CudaFnVectorWeighting.dist(x1, x2)

	Calculate the vector-weighted distance between two vectors.

	Parameters:	x1, x2 : CudaFnVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVectorWeighting

CudaFnVectorWeighting.equiv

	
CudaFnVectorWeighting.equiv(other)

	Test if other is an equivalent weighting.

	Returns:	equivalent : bool

True if other is a
FnWeightingBase instance
which yields the same result as this inner product for any
input, False otherwise. This is checked by entry-wise
comparison of matrices/vectors/constant of this inner
product and other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVectorWeighting

CudaFnVectorWeighting.inner

	
CudaFnVectorWeighting.inner(x1, x2)

	Calculate the vector weighted inner product of two vectors.

	Parameters:	x1, x2 : CudaFnVector

Vectors whose inner product is calculated

	Returns:	inner : float or complex

The inner product of the two provided vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVectorWeighting

CudaFnVectorWeighting.norm

	
CudaFnVectorWeighting.norm(x)

	Calculate the vector-weighted norm of a vector.

	Parameters:	x : CudaFnVector

Vector whose norm is calculated

	Returns:	norm : float

The norm of the provided vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaFnVectorWeighting

CudaFnVectorWeighting.vector_is_valid

	
CudaFnVectorWeighting.vector_is_valid()

	Test if the vector is a valid weight, i.e. positive.

Notes

This operation copies the vector to the CPU memory if necessary
and uses numpy.all, which can be very time-consuming in total.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaNtuples

	
class odl.space.cu_ntuples.CudaNtuples(size, dtype)

	Bases: odl.space.base_ntuples.NtuplesBase

The space NtuplesBase, implemented in CUDA.

Attributes

	dtype
	The data type of each entry.

	element_type
	CudaNtuplesVector

	shape
	The shape of this space.

	size
	The number of entries per tuple.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	element([inp,data_ptr])
	Create a new element.

	
__init__(size, dtype)

	Initialize a new instance.

	Parameters:	size : int

The number entries per tuple

dtype : object

The data type for each tuple entry. Can be provided in any
way the numpy.dtype function understands, most notably
as built-in type, as one of NumPy’s internal datatype
objects or as string.

Check CUDA_DTYPES for a list of available data types.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuples

CudaNtuples.dtype

	
CudaNtuples.dtype

	The data type of each entry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuples

CudaNtuples.element_type

	
CudaNtuples.element_type

	CudaNtuplesVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuples

CudaNtuples.shape

	
CudaNtuples.shape

	The shape of this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuples

CudaNtuples.size

	
CudaNtuples.size

	The number of entries per tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuples

CudaNtuples.__contains__

	
CudaNtuples.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is an NtuplesBaseVector instance and
other.space is equal to this space, False otherwise.

Examples

>>> from odl import Ntuples
>>> long_3 = Ntuples(3, dtype='int64')
>>> long_3.element() in long_3
True
>>> long_3.element() in Ntuples(3, dtype='int32')
False
>>> long_3.element() in Ntuples(3, dtype='float64')
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuples

CudaNtuples.__eq__

	
CudaNtuples.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is an instance of this space’s type
with the same size and dtype, otherwise False.

Examples

>>> from odl import Ntuples
>>> int_3 = Ntuples(3, dtype=int)
>>> int_3 == int_3
True

Equality is not identity:

>>> int_3a, int_3b = Ntuples(3, int), Ntuples(3, int)
>>> int_3a == int_3b
True
>>> int_3a is int_3b
False

>>> int_3, int_4 = Ntuples(3, int), Ntuples(4, int)
>>> int_3 == int_4
False
>>> int_3, str_3 = Ntuples(3, 'int'), Ntuples(3, 'S2')
>>> int_3 == str_3
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuples

CudaNtuples.contains_all

	
CudaNtuples.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuples

CudaNtuples.contains_set

	
CudaNtuples.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuples

CudaNtuples.element

	
CudaNtuples.element(inp=None, data_ptr=None)

	Create a new element.

	Parameters:	inp : array-like or scalar, optional

Input to initialize the new element.

If inp is a numpy.ndarray of shape (size,)
and the same data type as this space, the array is wrapped,
not copied.
Other array-like objects are copied (with broadcasting
if necessary).

If a single value is given, it is copied to all entries.

If both inp and data_ptr are None, an empty
element is created with no guarantee of its state
(memory allocation only).

data_ptr : int, optional

Memory address of a CUDA array container

Cannot be combined with inp.

	Returns:	element : CudaNtuplesVector

The new element

Notes

This method preserves “array views” of correct size and type,
see the examples below.

TODO: No, it does not yet!

Examples

>>> uc3 = CudaNtuples(3, 'uint8')
>>> x = uc3.element(np.array([1, 2, 3], dtype='uint8'))
>>> x
CudaNtuples(3, 'uint8').element([1, 2, 3])
>>> y = uc3.element([1, 2, 3])
>>> y
CudaNtuples(3, 'uint8').element([1, 2, 3])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaNtuplesVector

	
class odl.space.cu_ntuples.CudaNtuplesVector(space, data)

	Bases: odl.space.base_ntuples.NtuplesBaseVector, odl.set.space.LinearSpaceVector

Representation of a CudaNtuples element.

Attributes

	T
	The transpose of a vector, the functional given by (.

	data
	The data of this vector.

	data_ptr
	A raw pointer to the data of this vector.

	dtype
	Length of this vector, equal to space size.

	itemsize
	The size in bytes on one element of this type.

	nbytes
	The number of bytes this vector uses in memory.

	ndim
	Number of dimensions, always 1.

	shape
	Number of entries per axis, equals (size,) for linear storage.

	size
	Length of this vector, equal to space size.

	space
	Space to which this vector.

	ufunc
	CudaNtuplesUFuncs, access to numpy style ufuncs.

Methods

	__eq__(other)
	Return self == other.

	__getitem__(indices)
	Access values of this vector.

	__setitem__(indices,values)
	Set values of this vector.

	asarray([start,stop,step,out])
	Extract the data of this array as a numpy array.

	assign(other)
	Assign the values of other to self.

	copy()
	Create an identical (deep) copy of this vector.

	dist(other)
	Distance to other.

	divide(x,y)
	Divide by other inplace.

	inner(other)
	Inner product with other.

	lincomb(a,x1[,b,x2])
	Assign a linear combination to this vector.

	multiply(x,y)
	Multiply by other inplace.

	norm()
	Norm of vector

	set_zero()
	Set this vector to zero.

	show([title,method,show,fig])
	Display the function graphically.

	
__init__(space, data)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.T

	
CudaNtuplesVector.T

	The transpose of a vector, the functional given by (. , self)

	Returns:	transpose : InnerProductOperator

Notes

This function is only defined in inner product spaces.

In a complex space, this takes the conjugate transpose of
the vector.

Examples

>>> from odl import Rn
>>> import numpy as np
>>> rn = Rn(3)
>>> x = rn.element([1, 2, 3])
>>> y = rn.element([2, 1, 3])
>>> x.T(y)
13.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.data

	
CudaNtuplesVector.data

	The data of this vector.

	Parameters:	None

	Returns:	ptr : CudaFnVectorImpl

Underlying cuda data representation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.data_ptr

	
CudaNtuplesVector.data_ptr

	A raw pointer to the data of this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.dtype

	
CudaNtuplesVector.dtype

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.itemsize

	
CudaNtuplesVector.itemsize

	The size in bytes on one element of this type.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.nbytes

	
CudaNtuplesVector.nbytes

	The number of bytes this vector uses in memory.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.ndim

	
CudaNtuplesVector.ndim

	Number of dimensions, always 1.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.shape

	
CudaNtuplesVector.shape

	Number of entries per axis, equals (size,) for linear storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.size

	
CudaNtuplesVector.size

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.space

	
CudaNtuplesVector.space

	Space to which this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.ufunc

	
CudaNtuplesVector.ufunc

	CudaNtuplesUFuncs, access to numpy style ufuncs.

See also

	odl.util.ufuncs.NtuplesBaseUFuncs

	Base class for ufuncs in NtuplesBase spaces.

Notes

Not all ufuncs are currently optimized, some use the default numpy
implementation. This can be improved in the future.

Examples

>>> r2 = CudaRn(2)
>>> x = r2.element([1, -2])
>>> x.ufunc.absolute()
CudaRn(2).element([1.0, 2.0])

These functions can also be used with broadcasting

>>> x.ufunc.add(3)
CudaRn(2).element([4.0, 1.0])

and non-space elements

>>> x.ufunc.subtract([3, 3])
CudaRn(2).element([-2.0, -5.0])

There is also support for various reductions (sum, prod, min, max)

>>> x.ufunc.sum()
-1.0

Also supports out parameter

>>> y = r2.element([3, 4])
>>> out = r2.element()
>>> result = x.ufunc.add(y, out=out)
>>> result
CudaRn(2).element([4.0, 2.0])
>>> result is out
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.__eq__

	
CudaNtuplesVector.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if all elements of other are equal to this
vector’s elements, False otherwise

Examples

>>> r3 = CudaNtuples(3, 'float32')
>>> x = r3.element([1, 2, 3])
>>> x == x
True
>>> y = r3.element([1, 2, 3])
>>> x == y
True
>>> y = r3.element([0, 0, 0])
>>> x == y
False
>>> r3_2 = CudaNtuples(3, 'uint8')
>>> z = r3_2.element([1, 2, 3])
>>> x != z
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.__getitem__

	
CudaNtuplesVector.__getitem__(indices)

	Access values of this vector.

This will cause the values to be copied to CPU
which is a slow operation.

	Parameters:	indices : int or slice

The position(s) that should be accessed

	Returns:	values : scalar or CudaNtuplesVector

The value(s) at the index (indices)

Examples

>>> uc3 = CudaNtuples(3, 'uint8')
>>> y = uc3.element([1, 2, 3])
>>> y[0]
1
>>> z = y[1:3]
>>> z
CudaNtuples(2, 'uint8').element([2, 3])
>>> y[::2]
CudaNtuples(2, 'uint8').element([1, 3])
>>> y[::-1]
CudaNtuples(3, 'uint8').element([3, 2, 1])

The returned value is a view, modifications are reflected
in the original data:

>>> z[:] = [4, 5]
>>> y
CudaNtuples(3, 'uint8').element([1, 4, 5])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.__setitem__

	
CudaNtuplesVector.__setitem__(indices, values)

	Set values of this vector.

This will cause the values to be copied to CPU
which is a slow operation.

	Parameters:	indices : int or slice

The position(s) that should be set

values : scalar, array-like or CudaNtuplesVector

The value(s) that are to be assigned.

If index is an int, value must be single value.

If index is a slice, value must be broadcastable
to the size of the slice (same size, shape (1,)
or single value).

	Returns:	None

Examples

>>> uc3 = CudaNtuples(3, 'uint8')
>>> y = uc3.element([1, 2, 3])
>>> y[0] = 5
>>> y
CudaNtuples(3, 'uint8').element([5, 2, 3])
>>> y[1:3] = [7, 8]
>>> y
CudaNtuples(3, 'uint8').element([5, 7, 8])
>>> y[:] = np.array([0, 0, 0])
>>> y
CudaNtuples(3, 'uint8').element([0, 0, 0])

Scalar assignment

>>> y[:] = 5
>>> y
CudaNtuples(3, 'uint8').element([5, 5, 5])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.asarray

	
CudaNtuplesVector.asarray(start=None, stop=None, step=None, out=None)

	Extract the data of this array as a numpy array.

	Parameters:	start : int, optional

Start position. None means the first element.

start : int, optional

One element past the last element to be extracted.
None means the last element.

start : int, optional

Step length. None means 1.

out : numpy.ndarray

Array in which the result should be written in-place.
Has to be contiguous and of the correct dtype.

	Returns:	asarray : numpy.ndarray

Numpy array of the same type as the space.

Examples

>>> uc3 = CudaNtuples(3, 'uint8')
>>> y = uc3.element([1, 2, 3])
>>> y.asarray()
array([1, 2, 3], dtype=uint8)
>>> y.asarray(1, 3)
array([2, 3], dtype=uint8)

Using the out parameter

>>> out = np.empty((3,), dtype='uint8')
>>> result = y.asarray(out=out)
>>> out
array([1, 2, 3], dtype=uint8)
>>> result is out
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.assign

	
CudaNtuplesVector.assign(other)

	Assign the values of other to self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.copy

	
CudaNtuplesVector.copy()

	Create an identical (deep) copy of this vector.

	Returns:	copy : CudaNtuplesVector

The deep copy

Examples

>>> vec1 = CudaNtuples(3, 'uint8').element([1, 2, 3])
>>> vec2 = vec1.copy()
>>> vec2
CudaNtuples(3, 'uint8').element([1, 2, 3])
>>> vec1 == vec2
True
>>> vec1 is vec2
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.dist

	
CudaNtuplesVector.dist(other)

	Distance to other.

LinearSpace.dist

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.divide

	
CudaNtuplesVector.divide(x, y)

	Divide by other inplace.

LinearSpace.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.inner

	
CudaNtuplesVector.inner(other)

	Inner product with other.

LinearSpace.inner

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.lincomb

	
CudaNtuplesVector.lincomb(a, x1, b=None, x2=None)

	Assign a linear combination to this vector.

Implemented as space.lincomb(a, x1, b, x2, out=self).

LinearSpace.lincomb

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.multiply

	
CudaNtuplesVector.multiply(x, y)

	Multiply by other inplace.

LinearSpace.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.norm

	
CudaNtuplesVector.norm()

	Norm of vector

LinearSpace.norm

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.set_zero

	
CudaNtuplesVector.set_zero()

	Set this vector to zero.

LinearSpace.zero

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

 	CudaNtuplesVector

CudaNtuplesVector.show

	
CudaNtuplesVector.show(title=None, method='scatter', show=False, fig=None, **kwargs)

	Display the function graphically.

	Parameters:	title : str, optional

Set the title of the figure

method : str, optional

1d methods:

‘plot’ : graph plot

‘scatter’ : point plot

show : bool, optional

If the plot should be showed now or deferred until later.

fig : matplotlib.figure.Figure

The figure to show in. Expected to be of same “style”, as
the figure given by this function. The most common use case
is that fig is the return value from an earlier call to
this function.

kwargs : {‘figsize’, ‘saveto’, ...}

Extra keyword arguments passed on to display method
See the Matplotlib functions for documentation of extra
options.

	Returns:	fig : matplotlib.figure.Figure

The resulting figure. It is also shown to the user.

See also

	odl.util.graphics.show_discrete_data

	Underlying implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

CudaRn

	
odl.space.cu_ntuples.CudaRn(size, dtype='float32', **kwargs)

	The real space [image: R^n], implemented in CUDA.

Requires the compiled ODL extension odlpp.

	Parameters:	size : positive int

The number of dimensions of the space

dtype : optional

The data type of the storage array. Can be provided in any
way the numpy.dtype function understands, most notably
as built-in type, as one of NumPy’s internal datatype
objects or as string.

Only real floating-point data types are allowed.

kwargs : {‘weight’, ‘exponent’, ‘dist’, ‘norm’, ‘inner’}

See CudaFn

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

cu_weighted_dist

	
odl.space.cu_ntuples.cu_weighted_dist(weight, exponent=2.0)

	Weighted distance on CudaFn spaces as free function.

	Parameters:	weight : scalar, array-like or CudaFnVector

Weight of the inner product. A scalar is interpreted as a
constant weight and a 1-dim. array or a CudaFnVector
as a weighting vector.

exponent : positive float

Exponent of the distance

	Returns:	dist : callable

Distance function with given weight. Constant weightings
are applicable to spaces of any size, for arrays the sizes
of the weighting and the space must match.

See also

CudaFnConstWeighting, CudaFnVectorWeighting

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

cu_weighted_inner

	
odl.space.cu_ntuples.cu_weighted_inner(weight)

	Weighted inner product on CudaFn spaces as free function.

	Parameters:	weight : scalar, array-like or CudaFnVector

Weight of the inner product. A scalar is interpreted as a
constant weight and a 1-dim. array or a CudaFnVector
as a weighting vector.

	Returns:	inner : callable

Inner product function with given weight. Constant weightings
are applicable to spaces of any size, for arrays the sizes
of the weighting and the space must match.

See also

CudaFnConstWeighting, CudaFnVectorWeighting

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	cu_ntuples

cu_weighted_norm

	
odl.space.cu_ntuples.cu_weighted_norm(weight, exponent=2.0)

	Weighted norm on CudaFn spaces as free function.

	Parameters:	weight : scalar, array-like or CudaFnVector

Weight of the inner product. A scalar is interpreted as a
constant weight and a 1-dim. array or a CudaFnVector
as a weighting vector.

exponent : positive float

Exponent of the norm. If weight is a sparse matrix, only
1.0, 2.0 and inf are allowed.

	Returns:	norm : callable

Norm function with given weight. Constant weightings
are applicable to spaces of any size, for arrays the sizes
of the weighting and the space must match.

See also

CudaFnConstWeighting, CudaFnVectorWeighting

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

fspace

Spaces of functions with common domain and range.

Classes

	FunctionSet(domain,range[,out_dtype])
	A general set of functions with common domain and range.

	FunctionSetVector(fset,fcall[,out_dtype])
	Representation of a FunctionSet element.

	FunctionSpace(domain[,field,out_dtype])
	A vector space of functions.

	FunctionSpaceVector(fspace,fcall)
	Representation of a FunctionSpace element.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

FunctionSet

	
class odl.space.fspace.FunctionSet(domain, range, out_dtype=None)

	Bases: odl.set.sets.Set

A general set of functions with common domain and range.

Attributes

	domain
	Common domain of all functions in this set.

	element_type
	FunctionSetVector

	out_dtype
	Output data type of functions in this space.

	range
	Common range of all functions in this set.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	element([fcall,vectorized])
	Create a FunctionSet element.

	
__init__(domain, range, out_dtype=None)

	Initialize a new instance.

	Parameters:	domain : Set

The domain of the functions.

range : Set

The range of the functions.

out_dtype : optional

Data type of the return value of a function in this space.
Can be given in any way numpy.dtype understands, e.g. as
string (‘bool’) or data type (bool).
If no data type is given, a “lazy” evaluation is applied,
i.e. an adequate data type is inferred during function
evaluation.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSet

FunctionSet.domain

	
FunctionSet.domain

	Common domain of all functions in this set.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSet

FunctionSet.element_type

	
FunctionSet.element_type

	FunctionSetVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSet

FunctionSet.out_dtype

	
FunctionSet.out_dtype

	Output data type of functions in this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSet

FunctionSet.range

	
FunctionSet.range

	Common range of all functions in this set.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSet

FunctionSet.__contains__

	
FunctionSet.__contains__(other)

	Return other in self.

	Returns:	equals : bool

True if other is a FunctionSetVector
whose FunctionSetVector.space attribute
equals this space, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSet

FunctionSet.__eq__

	
FunctionSet.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is a FunctionSet with same
FunctionSet.domain and FunctionSet.range, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSet

FunctionSet.contains_all

	
FunctionSet.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSet

FunctionSet.contains_set

	
FunctionSet.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSet

FunctionSet.element

	
FunctionSet.element(fcall=None, vectorized=True)

	Create a FunctionSet element.

	Parameters:	fcall : callable, optional

The actual instruction for out-of-place evaluation.
It must return an FunctionSet.range element or a
numpy.ndarray of such (vectorized call).

vectorized : bool

Whether fcall supports vectorized evaluation.

	Returns:	element : FunctionSetVector

The new element, always supports vectorization

See also

	odl.discr.grid.TensorGrid.meshgrid

	efficient grids for function evaluation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

FunctionSetVector

	
class odl.space.fspace.FunctionSetVector(fset, fcall, out_dtype=None)

	Bases: odl.operator.operator.Operator

Representation of a FunctionSet element.

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

	space
	The space or set this function belongs to.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__(other)
	Returns vec == other.

	_call(x[,out])
	Raw evaluation method.

	assign(other)
	Assign other to this vector.

	copy()
	Create an identical (deep) copy of this vector.

	derivative(point)
	Return the operator derivative at point.

	
__init__(fset, fcall, out_dtype=None)

	Initialize a new instance.

	Parameters:	fset : FunctionSet

The set of functions this element lives in

fcall : callable

The actual instruction for out-of-place evaluation.
It must return an FunctionSet.range element or a
numpy.ndarray of such (vectorized call).

out_d

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.adjoint

	
FunctionSetVector.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.domain

	
FunctionSetVector.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.inverse

	
FunctionSetVector.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.is_functional

	
FunctionSetVector.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.is_linear

	
FunctionSetVector.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.range

	
FunctionSetVector.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.space

	
FunctionSetVector.space

	The space or set this function belongs to.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.__call__

	
FunctionSetVector.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

	Parameters:	x : domain element-like, meshgrid or numpy.ndarray

Input argument for the function evaluation. Conditions
on x depend on its type:

element-like: must be a castable to a domain element

meshgrid: length must be space.ndim, and the arrays must
be broadcastable against each other.

array: shape must be (d, N), where d is the number
of dimensions of the function domain

out : numpy.ndarray, optional

Output argument holding the result of the function
evaluation, can only be used for vectorized
functions. Its shape must be equal to
np.broadcast(*x).shape.

bounds_check : bool

If True, check if all input points lie in the function
domain in the case of vectorized evaluation. This requires
the domain to implement Set.contains_all.
Default: True

	Returns:	out : range element or array of elements

Result of the function evaluation. If out was provided,
the returned object is a reference to it.

	Raises:	TypeError

If x is not a valid vectorized evaluation argument

If out is not a range element or a numpy.ndarray
of range elements

ValueError

If evaluation points fall outside the valid domain

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.__eq__

	
FunctionSetVector.__eq__(other)

	Returns vec == other.

	Returns:	equals : bool

True if other is a FunctionSetVector with
other.space equal to this vector’s space and evaluation
function of other and this vector is equal. False
otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector._call

	
FunctionSetVector._call(x, out=None, **kwargs)

	Raw evaluation method.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.assign

	
FunctionSetVector.assign(other)

	Assign other to this vector.

This is implemented without FunctionSpace.lincomb to ensure that
vec == other evaluates to True after
vec.assign(other).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.copy

	
FunctionSetVector.copy()

	Create an identical (deep) copy of this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSetVector

FunctionSetVector.derivative

	
FunctionSetVector.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

FunctionSpace

	
class odl.space.fspace.FunctionSpace(domain, field=None, out_dtype=None)

	Bases: odl.space.fspace.FunctionSet, odl.set.space.LinearSpace

A vector space of functions.

Attributes

	domain
	Common domain of all functions in this set.

	element_type
	FunctionSpaceVector

	field
	The field of this vector space.

	out_dtype
	Output data type of functions in this space.

	range
	Common range of all functions in this set.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Returns s == other.

	_dist(x1,x2)
	Calculate the distance between x1 and x2.

	_divide(x1,x2,out)
	Raw pointwise division of two functions.

	_inner(x1,x2)
	Calculate the inner product of x1 and x2.

	_lincomb(a,x1,b,x2,out)
	Raw linear combination of x1 and x2.

	_multiply(x1,x2,out)
	Raw pointwise multiplication of two functions.

	_norm(x)
	Calculate the norm of x.

	astype(out_dtype)
	Return a copy of this space with new out_dtype.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	dist(x1,x2)
	Calculate the distance between two vectors.

	divide(x1,x2[,out])
	Calculate the pointwise division of x1 and x2

	element([fcall,vectorized])
	Create a FunctionSpace element.

	inner(x1,x2)
	Calculate the inner product of x1 and x2.

	lincomb(a,x1[,b,x2,out])
	Linear combination of vectors.

	multiply(x1,x2[,out])
	Calculate the pointwise product of x1 and x2.

	norm(x)
	Calculate the norm of a vector.

	one()
	The function mapping everything to one.

	zero()
	The function mapping everything to zero.

	
__init__(domain, field=None, out_dtype=None)

	Initialize a new instance.

	Parameters:	domain : Set

The domain of the functions

field : Field, optional

The range of the functions, usually the RealNumbers or
ComplexNumbers. If not given, the field is either inferred
from out_dtype, or, if the latter is also None, set
to RealNumbers().

out_dtype : optional

Data type of the return value of a function in this space.
Can be given in any way numpy.dtype understands, e.g. as
string (‘float64’) or data type (float).
By default, ‘float64’ is used for real and ‘complex128’
for complex spaces.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.domain

	
FunctionSpace.domain

	Common domain of all functions in this set.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.element_type

	
FunctionSpace.element_type

	FunctionSpaceVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.field

	
FunctionSpace.field

	The field of this vector space.

The field is the set of scalars of the space, that is numbers that
the vectors in the space can be multiplied with.

	Returns:	field : Field

The underlying field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.out_dtype

	
FunctionSpace.out_dtype

	Output data type of functions in this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.range

	
FunctionSpace.range

	Common range of all functions in this set.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.__contains__

	
FunctionSpace.__contains__(other)

	Return other in self.

	Returns:	equals : bool

True if other is a FunctionSetVector
whose FunctionSetVector.space attribute
equals this space, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.__eq__

	
FunctionSpace.__eq__(other)

	Returns s == other.

	Returns:	equals : bool

True if other is a FunctionSpace with same
FunctionSpace.domain and FunctionSpace.range,
False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace._dist

	
FunctionSpace._dist(x1, x2)

	Calculate the distance between x1 and x2.

This method is intended to be private, public callers should
resort to dist which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace._divide

	
FunctionSpace._divide(x1, x2, out)

	Raw pointwise division of two functions.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace._inner

	
FunctionSpace._inner(x1, x2)

	Calculate the inner product of x1 and x2.

This method is intended to be private, public callers should
resort to inner which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace._lincomb

	
FunctionSpace._lincomb(a, x1, b, x2, out)

	Raw linear combination of x1 and x2.

Notes

The additions and multiplications are implemented via simple
Python functions, so non-vectorized versions are slow.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace._multiply

	
FunctionSpace._multiply(x1, x2, out)

	Raw pointwise multiplication of two functions.

Notes

The multiplication is implemented with a simple Python
function, so the non-vectorized versions are slow.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace._norm

	
FunctionSpace._norm(x)

	Calculate the norm of x.

This method is intended to be private, public callers should
resort to norm which is type-checked.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.astype

	
FunctionSpace.astype(out_dtype)

	Return a copy of this space with new out_dtype.

	Parameters:	out_dtype : optional

Output data type of the returned space. Can be given in any
way numpy.dtype understands, e.g. as string (‘complex64’)
or data type (complex). None is interpreted as ‘float64’.

	Returns:	newspace : FunctionSpace

The version of this space with given data type

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.contains_all

	
FunctionSpace.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.contains_set

	
FunctionSpace.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.dist

	
FunctionSpace.dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : LinearSpaceVector

Vectors whose distance to compute

	Returns:	dist : float

Distance between vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.divide

	
FunctionSpace.divide(x1, x2, out=None)

	Calculate the pointwise division of x1 and x2

	Parameters:	x1 : LinearSpaceVector

The dividend

x2 : LinearSpaceVector

The divisor

out : LinearSpaceVector, optional

Vector to write the ratio to

	Returns:	out : LinearSpaceVector

Ratio of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.element

	
FunctionSpace.element(fcall=None, vectorized=True)

	Create a FunctionSpace element.

	Parameters:	fcall : callable, optional

The actual instruction for out-of-place evaluation.
It must return an FunctionSet.range element or a
numpy.ndarray of such (vectorized call).

If fcall is a FunctionSetVector, it is wrapped
as a new FunctionSpaceVector.

vectorized : bool

Whether fcall supports vectorized evaluation.

	Returns:	element : FunctionSpaceVector

The new element, always supports vectorization

Notes

If you specify vectorized=False, the function is decorated
with a vectorizer, which makes two elements created this way
from the same function being regarded as not equal.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.inner

	
FunctionSpace.inner(x1, x2)

	Calculate the inner product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Factors in the inner product

	Returns:	out : LinearSpace.field element

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.lincomb

	
FunctionSpace.lincomb(a, x1, b=None, x2=None, out=None)

	Linear combination of vectors.

Calculates

out = a * x1

or, if b and y are given,

out = a*x1 + b*x2

with error checking of types.

	Parameters:	a : Scalar in the field of this space

Scalar to multiply x1 with.

x1 : LinearSpaceVector

The first of the summands

b : Scalar, optional

Scalar to multiply x2 with.

x2 : LinearSpaceVector, optional

The second of the summands

out : LinearSpaceVector, optional

The Vector that the result should be written to.

	Returns:	out : LinearSpaceVector

Result of the linear combination. If out was provided,
the returned object is a reference to it.

Notes

The vectors out, x1 and x2 may be aligned, thus a call

space.lincomb(x, 2, x, 3.14, out=x)

is (mathematically) equivalent to

x = x * (1 + 2 + 3.14)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.multiply

	
FunctionSpace.multiply(x1, x2, out=None)

	Calculate the pointwise product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Multiplicands in the product

out : LinearSpaceVector, optional

Vector to write the product to

	Returns:	out : LinearSpaceVector

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.norm

	
FunctionSpace.norm(x)

	Calculate the norm of a vector.

	Parameters:	x : LinearSpaceVector

The vector

	Returns:	out : float

Norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.one

	
FunctionSpace.one()

	The function mapping everything to one.

This function is the multiplicative unit in the function space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpace

FunctionSpace.zero

	
FunctionSpace.zero()

	The function mapping everything to zero.

This function is the additive unit in the function space.

Since FunctionSpace.lincomb may be slow, we implement this function
directly.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

FunctionSpaceVector

	
class odl.space.fspace.FunctionSpaceVector(fspace, fcall)

	Bases: odl.set.space.LinearSpaceVector, odl.space.fspace.FunctionSetVector

Representation of a FunctionSpace element.

Attributes

	T
	The transpose of a vector, the functional given by (.

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	imag
	Pointwise imaginary part of this function.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

	real
	Pointwise real part of this function.

	space
	Space to which this vector belongs.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__(other)
	Returns vec == other.

	_call(x[,out])
	Raw evaluation method.

	assign(other)
	Assign other to this vector.

	conj()
	Pointwise complex conjugate of this function.

	copy()
	Create an identical (deep) copy of this vector.

	derivative(point)
	Return the operator derivative at point.

	dist(other)
	Distance to other.

	divide(x,y)
	Divide by other inplace.

	inner(other)
	Inner product with other.

	lincomb(a,x1[,b,x2])
	Assign a linear combination to this vector.

	multiply(x,y)
	Multiply by other inplace.

	norm()
	Norm of vector

	set_zero()
	Set this vector to zero.

	
__init__(fspace, fcall)

	Initialize a new instance.

	Parameters:	fspace : FunctionSpace

The set of functions this element lives in

fcall : callable

The actual instruction for out-of-place evaluation.
It must return an FunctionSet.range element or a
numpy.ndarray of such (vectorized call).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.T

	
FunctionSpaceVector.T

	The transpose of a vector, the functional given by (. , self)

	Returns:	transpose : InnerProductOperator

Notes

This function is only defined in inner product spaces.

In a complex space, this takes the conjugate transpose of
the vector.

Examples

>>> from odl import Rn
>>> import numpy as np
>>> rn = Rn(3)
>>> x = rn.element([1, 2, 3])
>>> y = rn.element([2, 1, 3])
>>> x.T(y)
13.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.adjoint

	
FunctionSpaceVector.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.domain

	
FunctionSpaceVector.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.imag

	
FunctionSpaceVector.imag

	Pointwise imaginary part of this function.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.inverse

	
FunctionSpaceVector.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.is_functional

	
FunctionSpaceVector.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.is_linear

	
FunctionSpaceVector.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.range

	
FunctionSpaceVector.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.real

	
FunctionSpaceVector.real

	Pointwise real part of this function.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.space

	
FunctionSpaceVector.space

	Space to which this vector belongs.

LinearSpace

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.__call__

	
FunctionSpaceVector.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

	Parameters:	x : domain element-like, meshgrid or numpy.ndarray

Input argument for the function evaluation. Conditions
on x depend on its type:

element-like: must be a castable to a domain element

meshgrid: length must be space.ndim, and the arrays must
be broadcastable against each other.

array: shape must be (d, N), where d is the number
of dimensions of the function domain

out : numpy.ndarray, optional

Output argument holding the result of the function
evaluation, can only be used for vectorized
functions. Its shape must be equal to
np.broadcast(*x).shape.

bounds_check : bool

If True, check if all input points lie in the function
domain in the case of vectorized evaluation. This requires
the domain to implement Set.contains_all.
Default: True

	Returns:	out : range element or array of elements

Result of the function evaluation. If out was provided,
the returned object is a reference to it.

	Raises:	TypeError

If x is not a valid vectorized evaluation argument

If out is not a range element or a numpy.ndarray
of range elements

ValueError

If evaluation points fall outside the valid domain

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.__eq__

	
FunctionSpaceVector.__eq__(other)

	Returns vec == other.

	Returns:	equals : bool

True if other is a FunctionSetVector with
other.space equal to this vector’s space and evaluation
function of other and this vector is equal. False
otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector._call

	
FunctionSpaceVector._call(x, out=None, **kwargs)

	Raw evaluation method.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.assign

	
FunctionSpaceVector.assign(other)

	Assign other to this vector.

This is implemented without FunctionSpace.lincomb to ensure that
vec == other evaluates to True after
vec.assign(other).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.conj

	
FunctionSpaceVector.conj()

	Pointwise complex conjugate of this function.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.copy

	
FunctionSpaceVector.copy()

	Create an identical (deep) copy of this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.derivative

	
FunctionSpaceVector.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.dist

	
FunctionSpaceVector.dist(other)

	Distance to other.

LinearSpace.dist

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.divide

	
FunctionSpaceVector.divide(x, y)

	Divide by other inplace.

LinearSpace.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.inner

	
FunctionSpaceVector.inner(other)

	Inner product with other.

LinearSpace.inner

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.lincomb

	
FunctionSpaceVector.lincomb(a, x1, b=None, x2=None)

	Assign a linear combination to this vector.

Implemented as space.lincomb(a, x1, b, x2, out=self).

LinearSpace.lincomb

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.multiply

	
FunctionSpaceVector.multiply(x, y)

	Multiply by other inplace.

LinearSpace.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.norm

	
FunctionSpaceVector.norm()

	Norm of vector

LinearSpace.norm

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	fspace

 	FunctionSpaceVector

FunctionSpaceVector.set_zero

	
FunctionSpaceVector.set_zero()

	Set this vector to zero.

LinearSpace.zero

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

ntuples

CPU implementations of n-dimensional Cartesian spaces.

This is a default implementation of [image: A^n] for an arbitrary set
[image: A] as well as the real and complex spaces [image: R^n] and
[image: C^n]. The data is represented by NumPy arrays.

Classes

	Fn(size,dtype,**kwargs)
	The vector space F^n with vector multiplication.

	FnConstWeighting(constant[,exponent,...])
	Weighting of Fn by a constant.

	FnCustomDist(dist)
	Custom distance on Fn, removes norm and inner.

	FnCustomInnerProduct(inner[,dist_using_inner])
	Custom inner product on Fn.

	FnCustomNorm(norm)
	Custom norm on Fn, removes inner.

	FnMatrixWeighting(matrix[,exponent,...])
	Matrix weighting for Fn.

	FnNoWeighting([exponent,dist_using_inner])
	Weighting of Fn with constant 1.

	FnVector(space,data)
	Representation of an Fn element.

	FnVectorWeighting(vector[,exponent,...])
	Vector weighting for Fn.

	MatVecOperator(matrix[,dom,ran])
	Matrix multiply operator [image: \mathbb{F}^n -> \mathbb{F}^m].

	Ntuples(size,dtype)
	The set of n-tuples of arbitrary type.

	NtuplesVector(space,data)
	Representation of an Ntuples element.

Functions

	Cn(size[,dtype])
	The complex vector space [image: C^n] with vector multiplication.

	Rn(size[,dtype])
	The real vector space [image: R^n] with vector multiplication.

	weighted_dist(weight[,exponent,use_inner])
	Weighted distance on Fn spaces as free function.

	weighted_inner(weight)
	Weighted inner product on Fn spaces as free function.

	weighted_norm(weight[,exponent])
	Weighted norm on Fn spaces as free function.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

Fn

	
class odl.space.ntuples.Fn(size, dtype, **kwargs)

	Bases: odl.space.base_ntuples.FnBase, odl.space.ntuples.Ntuples

The vector space F^n with vector multiplication.

This space implements n-tuples of elements from a Field F,
which is usually the real or complex numbers.

Its elements are represented as instances of the FnVector class.

Attributes

	dtype
	The data type of each entry.

	element_type
	Return FnVector.

	exponent
	Exponent of the norm and distance.

	field
	The field of this vector space.

	is_cn
	Return True if the space represents C^n, i.e.

	is_rn
	Return True if the space represents R^n, i.e.

	is_weighted
	Return True if the weighting is not FnNoWeighting.

	shape
	The shape of this space.

	size
	The number of entries per tuple.

	weighting
	This space’s weighting scheme.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	_dist(x1,x2)
	Calculate the distance between two vectors.

	_divide(x1,x2,out)
	The entry-wise division of two vectors, assigned to out.

	_inner(x1,x2)
	Raw inner product of two vectors.

	_lincomb(a,x1,b,x2,out)
	Linear combination of x1 and x2.

	_multiply(x1,x2,out)
	The entry-wise product of two vectors, assigned to out.

	_norm(x)
	Calculate the norm of a vector.

	astype(dtype)
	Return a copy of this space with new dtype.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	default_dtype(field)
	Return the default of Fn data type for a given field.

	dist(x1,x2)
	Calculate the distance between two vectors.

	divide(x1,x2[,out])
	Calculate the pointwise division of x1 and x2

	element([inp,data_ptr])
	Create a new element.

	inner(x1,x2)
	Calculate the inner product of x1 and x2.

	lincomb(a,x1[,b,x2,out])
	Linear combination of vectors.

	multiply(x1,x2[,out])
	Calculate the pointwise product of x1 and x2.

	norm(x)
	Calculate the norm of a vector.

	one()
	Create a vector of ones.

	zero()
	Create a vector of zeros.

	
__init__(size, dtype, **kwargs)

	Initialize a new instance.

	Parameters:	size : positive int

The number of dimensions of the space

dtype : object

The data type of the storage array. Can be provided in any
way the numpy.dtype function understands, most notably
as built-in type, as numpy.dtype or as string.

Only scalar data types are allowed.

weight : optional

Use weighted inner product, norm, and dist. The following
types are supported as weight:

FnWeightingBase:
Use this weighting as-is. Compatibility with this
space’s elements is not checked during init.

float: Weighting by a constant

array-like: Weighting by a matrix (2-dim. array) or a vector
(1-dim. array, corresponds to a diagonal matrix). A matrix
can also be given as a sparse matrix
(scipy.sparse.spmatrix).

Default: no weighting

This option cannot be combined with dist,
norm or inner.

exponent : positive float, optional

Exponent of the norm. For values other than 2.0, no
inner product is defined.
If weight is a sparse matrix, only 1.0, 2.0 and
inf are allowed.

This option is ignored if dist, norm or
inner is given.

Default: 2.0

dist : callable, optional

The distance function defining a metric on
[image: \mathbb{F}^n].
It must accept two FnVector arguments and
fulfill the following mathematical conditions for any
three vectors [image: x, y, z]:

	[image: d(x, y) = d(y, x)]

	[image: d(x, y) \geq 0]

	[image: d(x, y) = 0 \Leftrightarrow x = y]

	[image: d(x, y) \geq d(x, z) + d(z, y)]

By default, dist(x, y) is calculated as
norm(x - y). This creates an intermediate array
x-y, which can be
avoided by choosing dist_using_inner=True.

This option cannot be combined with weight,
norm or inner.

norm : callable, optional

The norm implementation. It must accept an
FnVector argument, return a
float and satisfy the following
conditions for all vectors [image: x, y] and scalars
[image: s]:

	[image: \lVert x\rVert \geq 0]

	[image: \lVert x\rVert = 0 \Leftrightarrow x = 0]

	[image: \lVert s x\rVert = \lvert s \rvert \lVert x\rVert]

	[image: \lVert x + y\rVert \leq \lVert x\rVert + \lVert y\rVert].

By default, norm(x) is calculated as
inner(x, x).

This option cannot be combined with weight,
dist or inner.

inner : callable, optional

The inner product implementation. It must accept two
FnVector arguments, return a element from
the field of the space (real or complex number) and
satisfy the following conditions for all vectors
[image: x, y, z] and scalars [image: s]:

	[image: \langle x,y\rangle = \overline{\langle y,x\rangle}]

	[image: \langle sx, y\rangle = s \langle x, y\rangle]

	[image: \langle x+z, y\rangle = \langle x,y\rangle + \langle z,y\rangle]

	[image: \langle x,x\rangle = 0 \Leftrightarrow x = 0]

This option cannot be combined with weight,
dist or norm.

dist_using_inner : bool, optional

Calculate dist using the formula

[image: \lVert x-y \rVert^2 = \lVert x \rVert^2 + \lVert y \rVert^2 - 2\Re \langle x, y \rangle].

This avoids the creation of new arrays and is thus faster
for large arrays. On the downside, it will not evaluate to
exactly zero for equal (but not identical) [image: x] and
[image: y].

This option can only be used if exponent is 2.0.

Default: False.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.dtype

	
Fn.dtype

	The data type of each entry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.element_type

	
Fn.element_type

	Return FnVector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.exponent

	
Fn.exponent

	Exponent of the norm and distance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.field

	
Fn.field

	The field of this vector space.

The field is the set of scalars of the space, that is numbers that
the vectors in the space can be multiplied with.

	Returns:	field : Field

The underlying field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.is_cn

	
Fn.is_cn

	Return True if the space represents C^n, i.e. complex tuples.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.is_rn

	
Fn.is_rn

	Return True if the space represents R^n, i.e. real tuples.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.is_weighted

	
Fn.is_weighted

	Return True if the weighting is not FnNoWeighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.shape

	
Fn.shape

	The shape of this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.size

	
Fn.size

	The number of entries per tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.weighting

	
Fn.weighting

	This space’s weighting scheme.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.__contains__

	
Fn.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is an NtuplesBaseVector instance and
other.space is equal to this space, False otherwise.

Examples

>>> from odl import Ntuples
>>> long_3 = Ntuples(3, dtype='int64')
>>> long_3.element() in long_3
True
>>> long_3.element() in Ntuples(3, dtype='int32')
False
>>> long_3.element() in Ntuples(3, dtype='float64')
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.__eq__

	
Fn.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is an instance of this space’s type
with the same
NtuplesBase.size and NtuplesBase.dtype,
and identical distance function, otherwise False.

Examples

>>> from numpy.linalg import norm
>>> def dist(x, y, ord):
... return norm(x - y, ord)

>>> from functools import partial
>>> dist2 = partial(dist, ord=2)
>>> c3 = Cn(3, dist=dist2)
>>> c3_same = Cn(3, dist=dist2)
>>> c3 == c3_same
True

Different dist functions result in different spaces - the
same applies for norm and inner:

>>> dist1 = partial(dist, ord=1)
>>> c3_1 = Cn(3, dist=dist1)
>>> c3_2 = Cn(3, dist=dist2)
>>> c3_1 == c3_2
False

Be careful with Lambdas - they result in non-identical function
objects:

>>> c3_lambda1 = Cn(3, dist=lambda x, y: norm(x-y, ord=1))
>>> c3_lambda2 = Cn(3, dist=lambda x, y: norm(x-y, ord=1))
>>> c3_lambda1 == c3_lambda2
False

An Fn space with the same data type is considered
equal:

>>> c3 = Cn(3)
>>> f3_cdouble = Fn(3, dtype='complex128')
>>> c3 == f3_cdouble
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn._dist

	
Fn._dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : FnVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

Distance between the vectors

Examples

>>> from numpy.linalg import norm
>>> c2_2 = Cn(2, dist=lambda x, y: norm(x - y, ord=2))
>>> x = c2_2.element([3+1j, 4])
>>> y = c2_2.element([1j, 4-4j])
>>> c2_2.dist(x, y)
5.0

>>> c2_2 = Cn(2, dist=lambda x, y: norm(x - y, ord=1))
>>> x = c2_2.element([3+1j, 4])
>>> y = c2_2.element([1j, 4-4j])
>>> c2_2.dist(x, y)
7.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn._divide

	
Fn._divide(x1, x2, out)

	The entry-wise division of two vectors, assigned to out.

	Parameters:	x1, x2 : FnVector

Dividend and divisor in the quotient

out : FnVector

Vector to which the result is written

	Returns:	None

Examples

>>> r3 = Rn(3)
>>> x = r3.element([3, 5, 6])
>>> y = r3.element([1, 2, 2])
>>> out = r3.element()
>>> r3.divide(x, y, out) # out is returned
Rn(3).element([3.0, 2.5, 3.0])
>>> out
Rn(3).element([3.0, 2.5, 3.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn._inner

	
Fn._inner(x1, x2)

	Raw inner product of two vectors.

	Parameters:	x1, x2 : FnVector

The vectors whose inner product is calculated

	Returns:	inner : field element

Inner product of the vectors

Examples

>>> import numpy as np
>>> c3 = Cn(2, inner=lambda x, y: np.vdot(y, x))
>>> x = c3.element([5+1j, -2j])
>>> y = c3.element([1, 1+1j])
>>> c3.inner(x, y) == (5+1j)*1 + (-2j)*(1-1j)
True

Define a space with custom inner product:

>>> weights = np.array([1., 2.])
>>> def weighted_inner(x, y):
... return np.vdot(weights * y.data, x.data)

>>> c3w = Cn(2, inner=weighted_inner)
>>> x = c3w.element(x) # elements must be cast (no copy)
>>> y = c3w.element(y)
>>> c3w.inner(x, y) == 1*(5+1j)*1 + 2*(-2j)*(1-1j)
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn._lincomb

	
Fn._lincomb(a, x1, b, x2, out)

	Linear combination of x1 and x2.

Calculate out = a*x1 + b*x2 using optimized BLAS
routines if possible.

	Parameters:	a, b : FnBase.field

Scalars to multiply x1 and x2 with

x1, x2 : FnVector

Summands in the linear combination

out : FnVector

Vector to which the result is written

	Returns:	None

Examples

>>> c3 = Cn(3)
>>> x = c3.element([1+1j, 2-1j, 3])
>>> y = c3.element([4+0j, 5, 6+0.5j])
>>> out = c3.element()
>>> c3.lincomb(2j, x, 3-1j, y, out) # out is returned
Cn(3).element([(10-2j), (17-1j), (18.5+1.5j)])
>>> out
Cn(3).element([(10-2j), (17-1j), (18.5+1.5j)])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn._multiply

	
Fn._multiply(x1, x2, out)

	The entry-wise product of two vectors, assigned to out.

	Parameters:	x1, x2 : FnVector

Factors in the product

out : FnVector

Vector to which the result is written

	Returns:	None

Examples

>>> c3 = Cn(3)
>>> x = c3.element([5+1j, 3, 2-2j])
>>> y = c3.element([1, 2+1j, 3-1j])
>>> out = c3.element()
>>> c3.multiply(x, y, out) # out is returned
Cn(3).element([(5+1j), (6+3j), (4-8j)])
>>> out
Cn(3).element([(5+1j), (6+3j), (4-8j)])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn._norm

	
Fn._norm(x)

	Calculate the norm of a vector.

	Parameters:	x : FnVector

The vector whose norm is calculated

	Returns:	norm : float

Norm of the vector

Examples

>>> import numpy as np
>>> c2_2 = Cn(2, norm=np.linalg.norm) # 2-norm
>>> x = c2_2.element([3+1j, 1-5j])
>>> c2_2.norm(x)
6.0

>>> from functools import partial
>>> c2_1 = Cn(2, norm=partial(np.linalg.norm, ord=1))
>>> x = c2_1.element([3-4j, 12+5j])
>>> c2_1.norm(x)
18.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.astype

	
Fn.astype(dtype)

	Return a copy of this space with new dtype.

	Parameters:	dtype :

Data type of the returned space. Can be given in any way
numpy.dtype understands, e.g. as string (‘complex64’)
or data type (complex).

	Returns:	newspace : FnBase

The version of this space with given data type

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.contains_all

	
Fn.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.contains_set

	
Fn.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.default_dtype

	
static Fn.default_dtype(field)

	Return the default of Fn data type for a given field.

	Parameters:	field : Field

Set of numbers to be represented by a data type.
Currently supported : RealNumbers, ComplexNumbers

	Returns:	dtype : type

Numpy data type specifier. The returned defaults are:

RealNumbers() : np.dtype('float64')

ComplexNumbers() : np.dtype('complex128')

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.dist

	
Fn.dist(x1, x2)

	Calculate the distance between two vectors.

	Parameters:	x1, x2 : LinearSpaceVector

Vectors whose distance to compute

	Returns:	dist : float

Distance between vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.divide

	
Fn.divide(x1, x2, out=None)

	Calculate the pointwise division of x1 and x2

	Parameters:	x1 : LinearSpaceVector

The dividend

x2 : LinearSpaceVector

The divisor

out : LinearSpaceVector, optional

Vector to write the ratio to

	Returns:	out : LinearSpaceVector

Ratio of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.element

	
Fn.element(inp=None, data_ptr=None)

	Create a new element.

	Parameters:	inp : array-like, optional

Input to initialize the new element.

If inp is None, an empty element is created with no
guarantee of its state (memory allocation only).

If inp is a numpy.ndarray of shape (size,)
and the same data type as this space, the array is wrapped,
not copied.
Other array-like objects are copied.

	Returns:	element : NtuplesVector

The new element created (from inp).

Notes

This method preserves “array views” of correct size and type,
see the examples below.

Examples

>>> strings3 = Ntuples(3, dtype='U1') # 1-char strings
>>> x = strings3.element(['w', 'b', 'w'])
>>> print(x)
[w, b, w]
>>> x.space
Ntuples(3, '<U1')

Construction from data pointer:

>>> int3 = Ntuples(3, dtype='int')
>>> x = int3.element([1, 2, 3])
>>> y = int3.element(data_ptr=x.data_ptr)
>>> print(y)
[1, 2, 3]
>>> y[0] = 5
>>> print(x)
[5, 2, 3]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.inner

	
Fn.inner(x1, x2)

	Calculate the inner product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Factors in the inner product

	Returns:	out : LinearSpace.field element

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.lincomb

	
Fn.lincomb(a, x1, b=None, x2=None, out=None)

	Linear combination of vectors.

Calculates

out = a * x1

or, if b and y are given,

out = a*x1 + b*x2

with error checking of types.

	Parameters:	a : Scalar in the field of this space

Scalar to multiply x1 with.

x1 : LinearSpaceVector

The first of the summands

b : Scalar, optional

Scalar to multiply x2 with.

x2 : LinearSpaceVector, optional

The second of the summands

out : LinearSpaceVector, optional

The Vector that the result should be written to.

	Returns:	out : LinearSpaceVector

Result of the linear combination. If out was provided,
the returned object is a reference to it.

Notes

The vectors out, x1 and x2 may be aligned, thus a call

space.lincomb(x, 2, x, 3.14, out=x)

is (mathematically) equivalent to

x = x * (1 + 2 + 3.14)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.multiply

	
Fn.multiply(x1, x2, out=None)

	Calculate the pointwise product of x1 and x2.

	Parameters:	x1, x2 : LinearSpaceVector

Multiplicands in the product

out : LinearSpaceVector, optional

Vector to write the product to

	Returns:	out : LinearSpaceVector

Product of the vectors. If out was provided, the
returned object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.norm

	
Fn.norm(x)

	Calculate the norm of a vector.

	Parameters:	x : LinearSpaceVector

The vector

	Returns:	out : float

Norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.one

	
Fn.one()

	Create a vector of ones.

Examples

>>> c3 = Cn(3)
>>> x = c3.one()
>>> x
Cn(3).element([(1+0j), (1+0j), (1+0j)])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Fn

Fn.zero

	
Fn.zero()

	Create a vector of zeros.

Examples

>>> c3 = Cn(3)
>>> x = c3.zero()
>>> x
Cn(3).element([0j, 0j, 0j])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

FnConstWeighting

	
class odl.space.ntuples.FnConstWeighting(constant, exponent=2.0, dist_using_inner=False)

	Bases: odl.space.base_ntuples.FnWeightingBase

Weighting of Fn by a constant.

For exponent 2.0, a new weighted inner product with constant
[image: c] is defined as

[image: \langle a, b\rangle_c := c\ b^H a]

with [image: b^H] standing for transposed complex conjugate.

For other exponents, only norm and dist are defined. In the case of
exponent inf, the weighted norm is defined as

[image: \lVert a\rVert_{c, \infty} := c \lVert a\rVert_\infty],

otherwise it is

[image: \lVert a\rVert_{c, p} := c^{1/p} \lVert a\rVert_p].

Not that this definition does not fulfill the limit property
in [image: p], i.e.

[image: \lim_{p\to\infty} \lVert a\rVert_{c,p} = \lVert a\rVert_\infty \neq \lVert a\rVert_{c,\infty}]

unless [image: c = 1].

The constant [image: c] must be positive.

Attributes

	const
	Weighting constant of this inner product.

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the constant-weighted distance between two vectors.

	equiv(other)
	Test if other is an equivalent weighting.

	inner(x1,x2)
	Calculate the constant-weighted inner product of two vectors.

	norm(x)
	Calculate the constant-weighted norm of a vector.

	
__init__(constant, exponent=2.0, dist_using_inner=False)

	Initialize a new instance.

	Parameters:	constant : positive float

Weighting constant of the inner product.

exponent : positive float

Exponent of the norm. For values other than 2.0, the inner
product is not defined.

dist_using_inner : bool, optional

Calculate dist using the formula

[image: \lVert x-y \rVert^2 = \lVert x \rVert^2 + \lVert y \rVert^2 - 2\Re \langle x, y \rangle].

This avoids the creation of new arrays and is thus faster
for large arrays. On the downside, it will not evaluate to
exactly zero for equal (but not identical) [image: x] and
[image: y].

Can only be used if exponent is 2.0.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnConstWeighting

FnConstWeighting.const

	
FnConstWeighting.const

	Weighting constant of this inner product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnConstWeighting

FnConstWeighting.exponent

	
FnConstWeighting.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnConstWeighting

FnConstWeighting.impl

	
FnConstWeighting.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnConstWeighting

FnConstWeighting.__eq__

	
FnConstWeighting.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is an FnConstWeighting
instance with the same constant, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnConstWeighting

FnConstWeighting.dist

	
FnConstWeighting.dist(x1, x2)

	Calculate the constant-weighted distance between two vectors.

	Parameters:	x1, x2 : FnVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnConstWeighting

FnConstWeighting.equiv

	
FnConstWeighting.equiv(other)

	Test if other is an equivalent weighting.

	Returns:	equivalent : bool

True if other is an
FnWeightingBase instance with the same FnWeightingBase.impl,
which yields the same result as this inner product for any
input, False otherwise. This is the same as equality
if other is an FnConstWeighting instance,
otherwise the equiv method of other is called.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnConstWeighting

FnConstWeighting.inner

	
FnConstWeighting.inner(x1, x2)

	Calculate the constant-weighted inner product of two vectors.

	Parameters:	x1, x2 : FnVector

Vectors whose inner product is calculated

	Returns:	inner : float or complex

The inner product of the two provided vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnConstWeighting

FnConstWeighting.norm

	
FnConstWeighting.norm(x)

	Calculate the constant-weighted norm of a vector.

	Parameters:	x1 : FnVector

Vector whose norm is calculated

	Returns:	norm : float

The norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

FnCustomDist

	
class odl.space.ntuples.FnCustomDist(dist)

	Bases: odl.space.base_ntuples.FnWeightingBase

Custom distance on Fn, removes norm and inner.

Attributes

	dist
	Custom distance of this instance..

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

Methods

	__eq__(other)
	Return self == other.

	equiv(other)
	Test if other is an equivalent inner product.

	inner(x1,x2)
	Inner product is not defined for custom distance.

	norm(x)
	Norm is not defined for custom distance.

	
__init__(dist)

	Initialize a new instance.

	Parameters:	dist : callable

The distance function defining a metric on
[image: \mathbb{F}^n].
It must accept two FnVector arguments and
fulfill the following mathematical conditions for any
three vectors [image: x, y, z]:

	[image: d(x, y) = d(y, x)]

	[image: d(x, y) \geq 0]

	[image: d(x, y) = 0 \Leftrightarrow x = y]

	[image: d(x, y) \geq d(x, z) + d(z, y)]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomDist

FnCustomDist.dist

	
FnCustomDist.dist

	Custom distance of this instance..

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomDist

FnCustomDist.exponent

	
FnCustomDist.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomDist

FnCustomDist.impl

	
FnCustomDist.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomDist

FnCustomDist.__eq__

	
FnCustomDist.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is an FnCustomDist
instance with the same norm, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomDist

FnCustomDist.equiv

	
FnCustomDist.equiv(other)

	Test if other is an equivalent inner product.

Should be overwritten, default tests for equality.

	Returns:	equivalent : bool

True if other is a FnWeightingBase instance which
yields the same result as this inner product for any
input, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomDist

FnCustomDist.inner

	
FnCustomDist.inner(x1, x2)

	Inner product is not defined for custom distance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomDist

FnCustomDist.norm

	
FnCustomDist.norm(x)

	Norm is not defined for custom distance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

FnCustomInnerProduct

	
class odl.space.ntuples.FnCustomInnerProduct(inner, dist_using_inner=False)

	Bases: odl.space.base_ntuples.FnWeightingBase

Custom inner product on Fn.

Attributes

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

	inner
	Custom inner product of this instance..

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the distance between two vectors.

	equiv(other)
	Test if other is an equivalent inner product.

	norm(x)
	Calculate the norm of a vector.

	
__init__(inner, dist_using_inner=False)

	Initialize a new instance.

	Parameters:	inner : callable

The inner product implementation. It must accept two
FnVector arguments, return a element from
the field of the space (real or complex number) and
satisfy the following conditions for all vectors
[image: x, y, z] and scalars [image: s]:

	[image: \langle x,y\rangle = \overline{\langle y,x\rangle}]

	[image: \langle sx, y\rangle = s \langle x, y\rangle]

	[image: \langle x+z, y\rangle = \langle x,y\rangle + \langle z,y\rangle]

	[image: \langle x,x\rangle = 0 \Leftrightarrow x = 0]

dist_using_inner : bool, optional

Calculate dist using the formula

[image: \lVert x-y \rVert^2 = \lVert x \rVert^2 + \lVert y \rVert^2 - 2\Re \langle x, y \rangle].

This avoids the creation of new arrays and is thus faster
for large arrays. On the downside, it will not evaluate to
exactly zero for equal (but not identical) [image: x] and
[image: y].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomInnerProduct

FnCustomInnerProduct.exponent

	
FnCustomInnerProduct.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomInnerProduct

FnCustomInnerProduct.impl

	
FnCustomInnerProduct.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomInnerProduct

FnCustomInnerProduct.inner

	
FnCustomInnerProduct.inner

	Custom inner product of this instance..

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomInnerProduct

FnCustomInnerProduct.__eq__

	
FnCustomInnerProduct.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is an FnCustomInnerProduct
instance with the same inner product, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomInnerProduct

FnCustomInnerProduct.dist

	
FnCustomInnerProduct.dist(x1, x2)

	Calculate the distance between two vectors.

This is the standard implementation using norm.
Subclasses should override it for optimization purposes.

	Parameters:	x1, x2 : FnBaseVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomInnerProduct

FnCustomInnerProduct.equiv

	
FnCustomInnerProduct.equiv(other)

	Test if other is an equivalent inner product.

Should be overwritten, default tests for equality.

	Returns:	equivalent : bool

True if other is a FnWeightingBase instance which
yields the same result as this inner product for any
input, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomInnerProduct

FnCustomInnerProduct.norm

	
FnCustomInnerProduct.norm(x)

	Calculate the norm of a vector.

This is the standard implementation using inner.
Subclasses should override it for optimization purposes.

	Parameters:	x1 : FnBaseVector

Vector whose norm is calculated

	Returns:	norm : float

The norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

FnCustomNorm

	
class odl.space.ntuples.FnCustomNorm(norm)

	Bases: odl.space.base_ntuples.FnWeightingBase

Custom norm on Fn, removes inner.

Attributes

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

	norm
	Custom norm of this instance..

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the distance between two vectors.

	equiv(other)
	Test if other is an equivalent inner product.

	inner(x1,x2)
	Inner product is not defined for custom distance.

	
__init__(norm)

	Initialize a new instance.

	Parameters:	norm : callable

The norm implementation. It must accept an
FnVector argument, return a float and satisfy
the following conditions for all vectors
[image: x, y] and scalars [image: s]:

	[image: \lVert x\rVert \geq 0]

	[image: \lVert x\rVert = 0 \Leftrightarrow x = 0]

	[image: \lVert s x\rVert = \lvert s \rvert \lVert x\rVert]

	[image: \lVert x + y\rVert \leq \lVert x\rVert + \lVert y\rVert].

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomNorm

FnCustomNorm.exponent

	
FnCustomNorm.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomNorm

FnCustomNorm.impl

	
FnCustomNorm.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomNorm

FnCustomNorm.norm

	
FnCustomNorm.norm

	Custom norm of this instance..

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomNorm

FnCustomNorm.__eq__

	
FnCustomNorm.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is an FnCustomNorm
instance with the same norm, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomNorm

FnCustomNorm.dist

	
FnCustomNorm.dist(x1, x2)

	Calculate the distance between two vectors.

This is the standard implementation using norm.
Subclasses should override it for optimization purposes.

	Parameters:	x1, x2 : FnBaseVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomNorm

FnCustomNorm.equiv

	
FnCustomNorm.equiv(other)

	Test if other is an equivalent inner product.

Should be overwritten, default tests for equality.

	Returns:	equivalent : bool

True if other is a FnWeightingBase instance which
yields the same result as this inner product for any
input, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnCustomNorm

FnCustomNorm.inner

	
FnCustomNorm.inner(x1, x2)

	Inner product is not defined for custom distance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

FnMatrixWeighting

	
class odl.space.ntuples.FnMatrixWeighting(matrix, exponent=2.0, dist_using_inner=False, **kwargs)

	Bases: odl.space.base_ntuples.FnWeightingBase

Matrix weighting for Fn.

For exponent 2.0, a new weighted inner product with matrix [image: W]
is defined as

[image: \langle a, b\rangle_W := b^H W a]

with [image: b^H] standing for transposed complex conjugate.

For other exponents, only norm and dist are defined. In the case of
exponent inf, the weighted norm is

[image: \lVert a\rVert_{W, \infty} := \lVert W a\rVert_\infty],

otherwise it is

[image: \lVert a\rVert_{W, p} := \lVert W^{1/p} a\rVert_p].

Not that this definition does not fulfill the limit property
in [image: p], i.e.

[image: \lim_{p\to\infty} \lVert a\rVert_{W,p} = \lVert a\rVert_\infty \neq \lVert a\rVert_{W,\infty}]

unless [image: W] is the identity matrix.

The matrix must be Hermitian and posivive definite, otherwise it
does not define an inner product or norm, respectively. This is not
checked during initialization.

Attributes

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

	matrix
	Weighting matrix of this inner product.

	matrix_issparse
	Whether the representing matrix is sparse or not.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the distance between two vectors.

	equiv(other)
	Test if other is an equivalent weighting.

	inner(x1,x2)
	Calculate the matrix-weighted inner product of two vectors.

	matrix_isvalid()
	Test if the matrix is positive definite Hermitian.

	norm(x)
	Calculate the matrix-weighted norm of a vector.

	
__init__(matrix, exponent=2.0, dist_using_inner=False, **kwargs)

	Initialize a new instance.

	Parameters:	matrix : scipy.sparse.spmatrix or array-like, 2-dim.

Square weighting matrix of the inner product

exponent : positive float

Exponent of the norm. For values other than 2.0, the inner
product is not defined.
If matrix is a sparse matrix, only 1.0, 2.0 and inf
are allowed.

dist_using_inner : bool, optional

Calculate dist using the formula

[image: \lVert x-y \rVert^2 = \lVert x \rVert^2 + \lVert y \rVert^2 - 2\Re \langle x, y \rangle].

This avoids the creation of new arrays and is thus faster
for large arrays. On the downside, it will not evaluate to
exactly zero for equal (but not identical) [image: x] and
[image: y].

Can only be used if exponent is 2.0.

precomp_mat_pow : bool

If True, precompute the matrix power [image: W^{1/p}]
during initialization. This has no effect if
exponent is 1.0, 2.0 or inf.

Default: False

cache_mat_pow : bool

If True, cache the matrix power [image: W^{1/p}] during
the first call to norm or dist. This has no
effect if exponent is 1.0, 2.0 or inf.

Default: False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnMatrixWeighting

FnMatrixWeighting.exponent

	
FnMatrixWeighting.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnMatrixWeighting

FnMatrixWeighting.impl

	
FnMatrixWeighting.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnMatrixWeighting

FnMatrixWeighting.matrix

	
FnMatrixWeighting.matrix

	Weighting matrix of this inner product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnMatrixWeighting

FnMatrixWeighting.matrix_issparse

	
FnMatrixWeighting.matrix_issparse

	Whether the representing matrix is sparse or not.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnMatrixWeighting

FnMatrixWeighting.__eq__

	
FnMatrixWeighting.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is an FnMatrixWeighting instance
with identical matrix, False otherwise.

See also

	equiv

	test for equivalent inner products

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnMatrixWeighting

FnMatrixWeighting.dist

	
FnMatrixWeighting.dist(x1, x2)

	Calculate the distance between two vectors.

This is the standard implementation using norm.
Subclasses should override it for optimization purposes.

	Parameters:	x1, x2 : FnBaseVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnMatrixWeighting

FnMatrixWeighting.equiv

	
FnMatrixWeighting.equiv(other)

	Test if other is an equivalent weighting.

	Returns:	equivalent : bool

True if other is an
FnWeightingBase instance with the same FnWeightingBase.impl,
which yields the same result as this inner product for any
input, False otherwise. This is checked by entry-wise
comparison of this inner product’s matrix with the matrix
or constant of other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnMatrixWeighting

FnMatrixWeighting.inner

	
FnMatrixWeighting.inner(x1, x2)

	Calculate the matrix-weighted inner product of two vectors.

	Parameters:	x1, x2 : FnVector

Vectors whose inner product is calculated

	Returns:	inner : float or complex

The inner product of the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnMatrixWeighting

FnMatrixWeighting.matrix_isvalid

	
FnMatrixWeighting.matrix_isvalid()

	Test if the matrix is positive definite Hermitian.

This test tries to calculate a Cholesky decomposition and can
be very time-consuming for large matrices. Sparse matrices are
not supported.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnMatrixWeighting

FnMatrixWeighting.norm

	
FnMatrixWeighting.norm(x)

	Calculate the matrix-weighted norm of a vector.

	Parameters:	x : FnVector

Vector whose norm is calculated

	Returns:	norm : float

The norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

FnNoWeighting

	
class odl.space.ntuples.FnNoWeighting(exponent=2.0, dist_using_inner=False)

	Bases: odl.space.ntuples.FnConstWeighting

Weighting of Fn with constant 1.

For exponent 2.0, the unweighted inner product is defined as

[image: \langle a, b\rangle := b^H a]

with [image: b^H] standing for transposed complex conjugate.

For other exponents, only norm and dist are defined.

Attributes

	const
	Weighting constant of this inner product.

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the constant-weighted distance between two vectors.

	equiv(other)
	Test if other is an equivalent weighting.

	inner(x1,x2)
	Calculate the constant-weighted inner product of two vectors.

	norm(x)
	Calculate the constant-weighted norm of a vector.

	
__init__(exponent=2.0, dist_using_inner=False)

	Initialize a new instance.

	Parameters:	exponent : positive float

Exponent of the norm. For values other than 2.0, the inner
product is not defined.

dist_using_inner : bool, optional

Calculate dist using the formula

[image: \lVert x-y \rVert^2 = \lVert x \rVert^2 + \lVert y \rVert^2 - 2\Re \langle x, y \rangle].

This avoids the creation of new arrays and is thus faster
for large arrays. On the downside, it will not evaluate to
exactly zero for equal (but not identical) [image: x] and
[image: y].

Can only be used if exponent is 2.0.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnNoWeighting

FnNoWeighting.const

	
FnNoWeighting.const

	Weighting constant of this inner product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnNoWeighting

FnNoWeighting.exponent

	
FnNoWeighting.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnNoWeighting

FnNoWeighting.impl

	
FnNoWeighting.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnNoWeighting

FnNoWeighting.__eq__

	
FnNoWeighting.__eq__(other)

	Return self == other.

	Returns:	equal : bool

True if other is an FnConstWeighting
instance with the same constant, False otherwise.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnNoWeighting

FnNoWeighting.dist

	
FnNoWeighting.dist(x1, x2)

	Calculate the constant-weighted distance between two vectors.

	Parameters:	x1, x2 : FnVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnNoWeighting

FnNoWeighting.equiv

	
FnNoWeighting.equiv(other)

	Test if other is an equivalent weighting.

	Returns:	equivalent : bool

True if other is an
FnWeightingBase instance with the same FnWeightingBase.impl,
which yields the same result as this inner product for any
input, False otherwise. This is the same as equality
if other is an FnConstWeighting instance,
otherwise the equiv method of other is called.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnNoWeighting

FnNoWeighting.inner

	
FnNoWeighting.inner(x1, x2)

	Calculate the constant-weighted inner product of two vectors.

	Parameters:	x1, x2 : FnVector

Vectors whose inner product is calculated

	Returns:	inner : float or complex

The inner product of the two provided vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnNoWeighting

FnNoWeighting.norm

	
FnNoWeighting.norm(x)

	Calculate the constant-weighted norm of a vector.

	Parameters:	x1 : FnVector

Vector whose norm is calculated

	Returns:	norm : float

The norm of the vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

FnVector

	
class odl.space.ntuples.FnVector(space, data)

	Bases: odl.space.base_ntuples.FnBaseVector, odl.space.ntuples.NtuplesVector

Representation of an Fn element.

Attributes

	T
	The transpose of a vector, the functional given by (.

	data
	The raw numpy.ndarray representing the data.

	data_ptr
	A raw pointer to the data container.

	dtype
	Length of this vector, equal to space size.

	imag
	The imaginary part of this vector.

	itemsize
	The size in bytes on one element of this type.

	nbytes
	The number of bytes this vector uses in memory.

	ndim
	Number of dimensions, always 1.

	real
	The real part of this vector.

	shape
	Number of entries per axis, equals (size,) for linear storage.

	size
	Length of this vector, equal to space size.

	space
	Space to which this vector.

	ufunc
	NtuplesUFuncs, access to numpy style ufuncs.

Methods

	__eq__(other)
	

	__getitem__(indices)
	Access values of this vector.

	__setitem__(indices,values)
	Set values of this vector.

	asarray([start,stop,step,out])
	Extract the data of this array as a numpy array.

	assign(other)
	Assign the values of other to self.

	conj([out])
	The complex conjugate of this vector.

	copy()
	

	dist(other)
	Distance to other.

	divide(x,y)
	Divide by other inplace.

	inner(other)
	Inner product with other.

	lincomb(a,x1[,b,x2])
	Assign a linear combination to this vector.

	multiply(x,y)
	Multiply by other inplace.

	norm()
	Norm of vector

	set_zero()
	Set this vector to zero.

	show([title,method,show,fig])
	Display the function graphically.

	
__init__(space, data)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.T

	
FnVector.T

	The transpose of a vector, the functional given by (. , self)

	Returns:	transpose : InnerProductOperator

Notes

This function is only defined in inner product spaces.

In a complex space, this takes the conjugate transpose of
the vector.

Examples

>>> from odl import Rn
>>> import numpy as np
>>> rn = Rn(3)
>>> x = rn.element([1, 2, 3])
>>> y = rn.element([2, 1, 3])
>>> x.T(y)
13.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.data

	
FnVector.data

	The raw numpy.ndarray representing the data.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.data_ptr

	
FnVector.data_ptr

	A raw pointer to the data container.

Examples

>>> import ctypes
>>> vec = Ntuples(3, 'int32').element([1, 2, 3])
>>> arr_type = ctypes.c_int32 * 3
>>> buffer = arr_type.from_address(vec.data_ptr)
>>> arr = np.frombuffer(buffer, dtype='int32')
>>> print(arr)
[1 2 3]

In-place modification via pointer:

>>> arr[0] = 5
>>> print(vec)
[5, 2, 3]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.dtype

	
FnVector.dtype

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.imag

	
FnVector.imag

	The imaginary part of this vector.

	Returns:	imag : FnVector

The imaginary part this vector as a vector in
Rn

Examples

>>> c3 = Cn(3)
>>> x = c3.element([5+1j, 3, 2-2j])
>>> x.imag
Rn(3).element([1.0, 0.0, -2.0])

The Rn vector is really a view, so changes affect
the original array:

>>> x.imag *= 2
>>> x
Cn(3).element([(5+2j), (3+0j), (2-4j)])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.itemsize

	
FnVector.itemsize

	The size in bytes on one element of this type.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.nbytes

	
FnVector.nbytes

	The number of bytes this vector uses in memory.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.ndim

	
FnVector.ndim

	Number of dimensions, always 1.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.real

	
FnVector.real

	The real part of this vector.

	Returns:	real : FnVector view with dtype

The real part this vector as a vector in Rn

Examples

>>> c3 = Cn(3)
>>> x = c3.element([5+1j, 3, 2-2j])
>>> x.real
Rn(3).element([5.0, 3.0, 2.0])

The Rn vector is really a view, so changes affect
the original array:

>>> x.real *= 2
>>> x
Cn(3).element([(10+1j), (6+0j), (4-2j)])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.shape

	
FnVector.shape

	Number of entries per axis, equals (size,) for linear storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.size

	
FnVector.size

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.space

	
FnVector.space

	Space to which this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.ufunc

	
FnVector.ufunc

	NtuplesUFuncs, access to numpy style ufuncs.

Notes

These are optimized for use with ntuples and incur no overhead.

Examples

>>> r2 = Rn(2)
>>> x = r2.element([1, -2])
>>> x.ufunc.absolute()
Rn(2).element([1.0, 2.0])

These functions can also be used with broadcasting

>>> x.ufunc.add(3)
Rn(2).element([4.0, 1.0])

and non-space elements

>>> x.ufunc.subtract([3, 3])
Rn(2).element([-2.0, -5.0])

There is also support for various reductions (sum, prod, min, max)

>>> x.ufunc.sum()
-1.0

They also support an out parameter

>>> y = r2.element([3, 4])
>>> out = r2.element()
>>> result = x.ufunc.add(y, out=out)
>>> result
Rn(2).element([4.0, 2.0])
>>> result is out
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.__eq__

	
FnVector.__eq__(other)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.__getitem__

	
FnVector.__getitem__(indices)

	Access values of this vector.

	Parameters:	indices : int or slice

The position(s) that should be accessed

	Returns:	values : scalar or NtuplesVector

The value(s) at the index (indices)

Examples

>>> str_3 = Ntuples(3, dtype='U6') # 6-char unicode
>>> x = str_3.element(['a', 'Hello!', '0'])
>>> print(x[0])
a
>>> print(x[1:3])
[Hello!, 0]
>>> x[1:3].space
Ntuples(2, '<U6')

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.__setitem__

	
FnVector.__setitem__(indices, values)

	Set values of this vector.

	Parameters:	indices : int or slice

The position(s) that should be set

values : scalar, array-like or NtuplesVector

The value(s) that are to be assigned.

If indices is an integer, value must be scalar.

If indices is a slice, value must be
broadcastable to the size of the slice (same size,
shape (1,) or single value).

	Returns:	None

Examples

>>> int_3 = Ntuples(3, 'int')
>>> x = int_3.element([1, 2, 3])
>>> x[0] = 5
>>> x
Ntuples(3, 'int').element([5, 2, 3])

Assignment from array-like structures or another
vector:

>>> y = Ntuples(2, 'short').element([-1, 2])
>>> x[:2] = y
>>> x
Ntuples(3, 'int').element([-1, 2, 3])
>>> x[1:3] = [7, 8]
>>> x
Ntuples(3, 'int').element([-1, 7, 8])
>>> x[:] = np.array([0, 0, 0])
>>> x
Ntuples(3, 'int').element([0, 0, 0])

Broadcasting is also supported:

>>> x[1:3] = -2.
>>> x
Ntuples(3, 'int').element([0, -2, -2])

Array views are preserved:

>>> y = x[::2] # view into x
>>> y[:] = -9
>>> print(y)
[-9, -9]
>>> print(x)
[-9, -2, -9]

Be aware of unsafe casts and over-/underflows, there
will be warnings at maximum.

>>> x = Ntuples(2, 'int8').element([0, 0])
>>> maxval = 255 # maximum signed 8-bit unsigned int
>>> x[0] = maxval + 1
>>> x
Ntuples(2, 'int8').element([0, 0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.asarray

	
FnVector.asarray(start=None, stop=None, step=None, out=None)

	Extract the data of this array as a numpy array.

	Parameters:	start : int, optional

Start position. None means the first element.

start : int, optional

One element past the last element to be extracted.
None means the last element.

start : int, optional

Step length. None means 1.

out : numpy.ndarray, optional

Array in which the result should be written in-place.
Has to be contiguous and of the correct dtype.

	Returns:	asarray : numpy.ndarray

Numpy array of the same type as the space.

Examples

>>> import ctypes
>>> vec = Ntuples(3, 'float').element([1, 2, 3])
>>> vec.asarray()
array([1., 2., 3.])
>>> vec.asarray(start=1, stop=3)
array([2., 3.])

Using the out parameter

>>> out = np.empty((3,), dtype='float')
>>> result = vec.asarray(out=out)
>>> out
array([1., 2., 3.])
>>> result is out
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.assign

	
FnVector.assign(other)

	Assign the values of other to self.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.conj

	
FnVector.conj(out=None)

	The complex conjugate of this vector.

	Parameters:	out : FnVector, optional

Vector to which the complex conjugate is written.
Must be an element of this vector’s space.

	Returns:	out : FnVector

The complex conjugate vector. If out was provided,
the returned object is a reference to it.

Examples

>>> x = Cn(3).element([5+1j, 3, 2-2j])
>>> y = x.conj(); print(y)
[(5-1j), (3-0j), (2+2j)]

The out parameter allows you to avoid a copy

>>> z = Cn(3).element()
>>> z_out = x.conj(out=z); print(z)
[(5-1j), (3-0j), (2+2j)]
>>> z_out is z
True

It can also be used for in-place conj

>>> x_out = x.conj(out=x); print(x)
[(5-1j), (3-0j), (2+2j)]
>>> x_out is x
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.copy

	
FnVector.copy()

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.dist

	
FnVector.dist(other)

	Distance to other.

LinearSpace.dist

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.divide

	
FnVector.divide(x, y)

	Divide by other inplace.

LinearSpace.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.inner

	
FnVector.inner(other)

	Inner product with other.

LinearSpace.inner

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.lincomb

	
FnVector.lincomb(a, x1, b=None, x2=None)

	Assign a linear combination to this vector.

Implemented as space.lincomb(a, x1, b, x2, out=self).

LinearSpace.lincomb

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.multiply

	
FnVector.multiply(x, y)

	Multiply by other inplace.

LinearSpace.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.norm

	
FnVector.norm()

	Norm of vector

LinearSpace.norm

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.set_zero

	
FnVector.set_zero()

	Set this vector to zero.

LinearSpace.zero

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVector

FnVector.show

	
FnVector.show(title=None, method='scatter', show=False, fig=None, **kwargs)

	Display the function graphically.

	Parameters:	title : str, optional

Set the title of the figure

method : str, optional

1d methods:

‘plot’ : graph plot

‘scatter’ : point plot

show : bool, optional

If the plot should be showed now or deferred until later.

fig : matplotlib.figure.Figure

The figure to show in. Expected to be of same “style”, as
the figure given by this function. The most common use case
is that fig is the return value from an earlier call to
this function.

kwargs : {‘figsize’, ‘saveto’, ...}

Extra keyword arguments passed on to display method
See the Matplotlib functions for documentation of extra
options.

	Returns:	fig : matplotlib.figure.Figure

The resulting figure. It is also shown to the user.

See also

	odl.util.graphics.show_discrete_data

	Underlying implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

FnVectorWeighting

	
class odl.space.ntuples.FnVectorWeighting(vector, exponent=2.0, dist_using_inner=False)

	Bases: odl.space.base_ntuples.FnWeightingBase

Vector weighting for Fn.

For exponent 2.0, a new weighted inner product with vector [image: w]
is defined as

[image: \langle a, b\rangle_w := b^H (w \odot a)]

with [image: b^H] standing for transposed complex conjugate and
[image: w \odot a] for element-wise multiplication.

For other exponents, only norm and dist are defined. In the case of
exponent inf, the weighted norm is

[image: \lVert a\rVert_{w,\infty}:=\lVert w\odot a\rVert_\infty],

otherwise it is

[image: \lVert a\rVert_{w, p} := \lVert w^{1/p}\odot a\rVert_p].

Not that this definition does not fulfill the limit property
in [image: p], i.e.

[image: \lim_{p\to\infty} \lVert a\rVert_{w,p} = \lVert a\rVert_\infty \neq \lVert a\rVert_{w,\infty}]

unless [image: w = (1,\dots,1)].

The vector may only have positive entries, otherwise it does not
define an inner product or norm, respectively. This is not checked
during initialization.

Attributes

	exponent
	Exponent of this weighting.

	impl
	Implementation backend of this weighting.

	vector
	Weighting vector of this inner product.

Methods

	__eq__(other)
	Return self == other.

	dist(x1,x2)
	Calculate the distance between two vectors.

	equiv(other)
	Test if other is an equivalent weighting.

	inner(x1,x2)
	Calculate the vector weighted inner product of two vectors.

	norm(x)
	Calculate the vector-weighted norm of a vector.

	vector_is_valid()
	Test if the vector is a valid weight, i.e.

	
__init__(vector, exponent=2.0, dist_using_inner=False)

	Initialize a new instance.

	Parameters:	vector : array-like, one-dim.

Weighting vector of the inner product

exponent : positive float

Exponent of the norm. For values other than 2.0, the inner
product is not defined.
If matrix is a sparse matrix, only 1.0, 2.0 and inf
are allowed.

dist_using_inner : bool, optional

Calculate dist using the formula

[image: \lVert x-y \rVert^2 = \lVert x \rVert^2 + \lVert y \rVert^2 - 2\Re \langle x, y \rangle].

This avoids the creation of new arrays and is thus faster
for large arrays. On the downside, it will not evaluate to
exactly zero for equal (but not identical) [image: x] and
[image: y].

Can only be used if exponent is 2.0.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVectorWeighting

FnVectorWeighting.exponent

	
FnVectorWeighting.exponent

	Exponent of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVectorWeighting

FnVectorWeighting.impl

	
FnVectorWeighting.impl

	Implementation backend of this weighting.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVectorWeighting

FnVectorWeighting.vector

	
FnVectorWeighting.vector

	Weighting vector of this inner product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVectorWeighting

FnVectorWeighting.__eq__

	
FnVectorWeighting.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is an FnVectorWeighting instance
with identical vector, False otherwise.

See also

	equiv

	test for equivalent inner products

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVectorWeighting

FnVectorWeighting.dist

	
FnVectorWeighting.dist(x1, x2)

	Calculate the distance between two vectors.

This is the standard implementation using norm.
Subclasses should override it for optimization purposes.

	Parameters:	x1, x2 : FnBaseVector

Vectors whose mutual distance is calculated

	Returns:	dist : float

The distance between the vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVectorWeighting

FnVectorWeighting.equiv

	
FnVectorWeighting.equiv(other)

	Test if other is an equivalent weighting.

	Returns:	equivalent : bool

True if other is an
FnWeightingBase instance with the same FnWeightingBase.impl,
which yields the same result as this inner product for any
input, False otherwise. This is checked by entry-wise
comparison of matrices/vectors/constant of this inner
product and other.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVectorWeighting

FnVectorWeighting.inner

	
FnVectorWeighting.inner(x1, x2)

	Calculate the vector weighted inner product of two vectors.

	Parameters:	x1, x2 : FnVector

Vectors whose inner product is calculated

	Returns:	inner : float or complex

The inner product of the two provided vectors

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVectorWeighting

FnVectorWeighting.norm

	
FnVectorWeighting.norm(x)

	Calculate the vector-weighted norm of a vector.

	Parameters:	x : FnVector

Vector whose norm is calculated

	Returns:	norm : float

The norm of the provided vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	FnVectorWeighting

FnVectorWeighting.vector_is_valid

	
FnVectorWeighting.vector_is_valid()

	Test if the vector is a valid weight, i.e. positive.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

MatVecOperator

	
class odl.space.ntuples.MatVecOperator(matrix, dom=None, ran=None)

	Bases: odl.operator.operator.Operator

Matrix multiply operator [image: \mathbb{F}^n -> \mathbb{F}^m].

Attributes

	adjoint
	Adjoint operator represented by the adjoint matrix.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	matrix
	Matrix representing this operator.

	matrix_issparse
	Whether the representing matrix is sparse or not.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Raw apply method on input, writing to given output.

	derivative(point)
	Return the operator derivative at point.

	
__init__(matrix, dom=None, ran=None)

	Initialize a new instance.

	Parameters:	matrix : array-like or scipy.sparse.spmatrix

Matrix representing the linear operator. Its shape must be
(m, n), where n is the size of dom and m the
size of ran. Its dtype must be castable to the range
dtype.

dom : Fn, optional

Space on whose elements the matrix acts. If not provided,
the domain is inferred from the matrix dtype and
shape. If provided, its dtype must be castable to the
range dtype.

ran : Fn, optional

Space to which the matrix maps. If not provided,
the domain is inferred from the matrix dtype and
shape.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator.adjoint

	
MatVecOperator.adjoint

	Adjoint operator represented by the adjoint matrix.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator.domain

	
MatVecOperator.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator.inverse

	
MatVecOperator.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator.is_functional

	
MatVecOperator.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator.is_linear

	
MatVecOperator.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator.matrix

	
MatVecOperator.matrix

	Matrix representing this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator.matrix_issparse

	
MatVecOperator.matrix_issparse

	Whether the representing matrix is sparse or not.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator.range

	
MatVecOperator.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator.__call__

	
MatVecOperator.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator._call

	
MatVecOperator._call(x, out=None)

	Raw apply method on input, writing to given output.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	MatVecOperator

MatVecOperator.derivative

	
MatVecOperator.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

Ntuples

	
class odl.space.ntuples.Ntuples(size, dtype)

	Bases: odl.space.base_ntuples.NtuplesBase

The set of n-tuples of arbitrary type.

Attributes

	dtype
	The data type of each entry.

	element_type
	NtuplesVector

	shape
	The shape of this space.

	size
	The number of entries per tuple.

Methods

	__contains__(other)
	Return other in self.

	__eq__(other)
	Return self == other.

	contains_all(other)
	Test if all points in other are contained in this set.

	contains_set(other)
	Test if other is a subset of this set.

	element([inp,data_ptr])
	Create a new element.

	one()
	Create a vector of ones.

	zero()
	Create a vector of zeros.

	
__init__(size, dtype)

	Initialize a new instance.

	Parameters:	size : non-negative int

The number of entries per tuple

dtype :

The data type for each tuple entry. Can be provided in any
way the numpy.dtype function understands, most notably
as built-in type, as one of NumPy’s internal datatype
objects or as string.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.dtype

	
Ntuples.dtype

	The data type of each entry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.element_type

	
Ntuples.element_type

	NtuplesVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.shape

	
Ntuples.shape

	The shape of this space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.size

	
Ntuples.size

	The number of entries per tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.__contains__

	
Ntuples.__contains__(other)

	Return other in self.

	Returns:	contains : bool

True if other is an NtuplesBaseVector instance and
other.space is equal to this space, False otherwise.

Examples

>>> from odl import Ntuples
>>> long_3 = Ntuples(3, dtype='int64')
>>> long_3.element() in long_3
True
>>> long_3.element() in Ntuples(3, dtype='int32')
False
>>> long_3.element() in Ntuples(3, dtype='float64')
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.__eq__

	
Ntuples.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if other is an instance of this space’s type
with the same size and dtype, otherwise False.

Examples

>>> from odl import Ntuples
>>> int_3 = Ntuples(3, dtype=int)
>>> int_3 == int_3
True

Equality is not identity:

>>> int_3a, int_3b = Ntuples(3, int), Ntuples(3, int)
>>> int_3a == int_3b
True
>>> int_3a is int_3b
False

>>> int_3, int_4 = Ntuples(3, int), Ntuples(4, int)
>>> int_3 == int_4
False
>>> int_3, str_3 = Ntuples(3, 'int'), Ntuples(3, 'S2')
>>> int_3 == str_3
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.contains_all

	
Ntuples.contains_all(other)

	Test if all points in other are contained in this set.

This is a default implementation and should be overridden by
subclasses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.contains_set

	
Ntuples.contains_set(other)

	Test if other is a subset of this set.

Implementing this method is optional. Default it tests for equality.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.element

	
Ntuples.element(inp=None, data_ptr=None)

	Create a new element.

	Parameters:	inp : array-like, optional

Input to initialize the new element.

If inp is None, an empty element is created with no
guarantee of its state (memory allocation only).

If inp is a numpy.ndarray of shape (size,)
and the same data type as this space, the array is wrapped,
not copied.
Other array-like objects are copied.

	Returns:	element : NtuplesVector

The new element created (from inp).

Notes

This method preserves “array views” of correct size and type,
see the examples below.

Examples

>>> strings3 = Ntuples(3, dtype='U1') # 1-char strings
>>> x = strings3.element(['w', 'b', 'w'])
>>> print(x)
[w, b, w]
>>> x.space
Ntuples(3, '<U1')

Construction from data pointer:

>>> int3 = Ntuples(3, dtype='int')
>>> x = int3.element([1, 2, 3])
>>> y = int3.element(data_ptr=x.data_ptr)
>>> print(y)
[1, 2, 3]
>>> y[0] = 5
>>> print(x)
[5, 2, 3]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.one

	
Ntuples.one()

	Create a vector of ones.

Examples

>>> c3 = Cn(3)
>>> x = c3.one()
>>> x
Cn(3).element([(1+0j), (1+0j), (1+0j)])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	Ntuples

Ntuples.zero

	
Ntuples.zero()

	Create a vector of zeros.

Examples

>>> c3 = Cn(3)
>>> x = c3.zero()
>>> x
Cn(3).element([0j, 0j, 0j])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

NtuplesVector

	
class odl.space.ntuples.NtuplesVector(space, data)

	Bases: odl.space.base_ntuples.NtuplesBaseVector

Representation of an Ntuples element.

Attributes

	data
	The raw numpy.ndarray representing the data.

	data_ptr
	A raw pointer to the data container.

	dtype
	Length of this vector, equal to space size.

	itemsize
	The size in bytes on one element of this type.

	nbytes
	The number of bytes this vector uses in memory.

	ndim
	Number of dimensions, always 1.

	shape
	Number of entries per axis, equals (size,) for linear storage.

	size
	Length of this vector, equal to space size.

	space
	Space to which this vector.

	ufunc
	NtuplesUFuncs, access to numpy style ufuncs.

Methods

	__eq__(other)
	Return self == other.

	__getitem__(indices)
	Access values of this vector.

	__setitem__(indices,values)
	Set values of this vector.

	asarray([start,stop,step,out])
	Extract the data of this array as a numpy array.

	copy()
	Create an identical (deep) copy of this vector.

	show([title,method,show,fig])
	Display the function graphically.

	
__init__(space, data)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.data

	
NtuplesVector.data

	The raw numpy.ndarray representing the data.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.data_ptr

	
NtuplesVector.data_ptr

	A raw pointer to the data container.

Examples

>>> import ctypes
>>> vec = Ntuples(3, 'int32').element([1, 2, 3])
>>> arr_type = ctypes.c_int32 * 3
>>> buffer = arr_type.from_address(vec.data_ptr)
>>> arr = np.frombuffer(buffer, dtype='int32')
>>> print(arr)
[1 2 3]

In-place modification via pointer:

>>> arr[0] = 5
>>> print(vec)
[5, 2, 3]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.dtype

	
NtuplesVector.dtype

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.itemsize

	
NtuplesVector.itemsize

	The size in bytes on one element of this type.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.nbytes

	
NtuplesVector.nbytes

	The number of bytes this vector uses in memory.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.ndim

	
NtuplesVector.ndim

	Number of dimensions, always 1.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.shape

	
NtuplesVector.shape

	Number of entries per axis, equals (size,) for linear storage.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.size

	
NtuplesVector.size

	Length of this vector, equal to space size.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.space

	
NtuplesVector.space

	Space to which this vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.ufunc

	
NtuplesVector.ufunc

	NtuplesUFuncs, access to numpy style ufuncs.

Notes

These are optimized for use with ntuples and incur no overhead.

Examples

>>> r2 = Rn(2)
>>> x = r2.element([1, -2])
>>> x.ufunc.absolute()
Rn(2).element([1.0, 2.0])

These functions can also be used with broadcasting

>>> x.ufunc.add(3)
Rn(2).element([4.0, 1.0])

and non-space elements

>>> x.ufunc.subtract([3, 3])
Rn(2).element([-2.0, -5.0])

There is also support for various reductions (sum, prod, min, max)

>>> x.ufunc.sum()
-1.0

They also support an out parameter

>>> y = r2.element([3, 4])
>>> out = r2.element()
>>> result = x.ufunc.add(y, out=out)
>>> result
Rn(2).element([4.0, 2.0])
>>> result is out
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.__eq__

	
NtuplesVector.__eq__(other)

	Return self == other.

	Returns:	equals : bool

True if all entries of other are equal to this
vector’s entries, False otherwise.

Notes

Space membership is not checked, hence vectors from
different spaces can be equal.

Examples

>>> vec1 = Ntuples(3, int).element([1, 2, 3])
>>> vec2 = Ntuples(3, int).element([-1, 2, 0])
>>> vec1 == vec2
False
>>> vec2 = Ntuples(3, int).element([1, 2, 3])
>>> vec1 == vec2
True

Space membership matters:

>>> vec2 = Ntuples(3, float).element([1, 2, 3])
>>> vec1 == vec2 or vec2 == vec1
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.__getitem__

	
NtuplesVector.__getitem__(indices)

	Access values of this vector.

	Parameters:	indices : int or slice

The position(s) that should be accessed

	Returns:	values : scalar or NtuplesVector

The value(s) at the index (indices)

Examples

>>> str_3 = Ntuples(3, dtype='U6') # 6-char unicode
>>> x = str_3.element(['a', 'Hello!', '0'])
>>> print(x[0])
a
>>> print(x[1:3])
[Hello!, 0]
>>> x[1:3].space
Ntuples(2, '<U6')

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.__setitem__

	
NtuplesVector.__setitem__(indices, values)

	Set values of this vector.

	Parameters:	indices : int or slice

The position(s) that should be set

values : scalar, array-like or NtuplesVector

The value(s) that are to be assigned.

If indices is an integer, value must be scalar.

If indices is a slice, value must be
broadcastable to the size of the slice (same size,
shape (1,) or single value).

	Returns:	None

Examples

>>> int_3 = Ntuples(3, 'int')
>>> x = int_3.element([1, 2, 3])
>>> x[0] = 5
>>> x
Ntuples(3, 'int').element([5, 2, 3])

Assignment from array-like structures or another
vector:

>>> y = Ntuples(2, 'short').element([-1, 2])
>>> x[:2] = y
>>> x
Ntuples(3, 'int').element([-1, 2, 3])
>>> x[1:3] = [7, 8]
>>> x
Ntuples(3, 'int').element([-1, 7, 8])
>>> x[:] = np.array([0, 0, 0])
>>> x
Ntuples(3, 'int').element([0, 0, 0])

Broadcasting is also supported:

>>> x[1:3] = -2.
>>> x
Ntuples(3, 'int').element([0, -2, -2])

Array views are preserved:

>>> y = x[::2] # view into x
>>> y[:] = -9
>>> print(y)
[-9, -9]
>>> print(x)
[-9, -2, -9]

Be aware of unsafe casts and over-/underflows, there
will be warnings at maximum.

>>> x = Ntuples(2, 'int8').element([0, 0])
>>> maxval = 255 # maximum signed 8-bit unsigned int
>>> x[0] = maxval + 1
>>> x
Ntuples(2, 'int8').element([0, 0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.asarray

	
NtuplesVector.asarray(start=None, stop=None, step=None, out=None)

	Extract the data of this array as a numpy array.

	Parameters:	start : int, optional

Start position. None means the first element.

start : int, optional

One element past the last element to be extracted.
None means the last element.

start : int, optional

Step length. None means 1.

out : numpy.ndarray, optional

Array in which the result should be written in-place.
Has to be contiguous and of the correct dtype.

	Returns:	asarray : numpy.ndarray

Numpy array of the same type as the space.

Examples

>>> import ctypes
>>> vec = Ntuples(3, 'float').element([1, 2, 3])
>>> vec.asarray()
array([1., 2., 3.])
>>> vec.asarray(start=1, stop=3)
array([2., 3.])

Using the out parameter

>>> out = np.empty((3,), dtype='float')
>>> result = vec.asarray(out=out)
>>> out
array([1., 2., 3.])
>>> result is out
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.copy

	
NtuplesVector.copy()

	Create an identical (deep) copy of this vector.

	Parameters:	None

	Returns:	copy : NtuplesVector

The deep copy

Examples

>>> vec1 = Ntuples(3, 'int').element([1, 2, 3])
>>> vec2 = vec1.copy()
>>> vec2
Ntuples(3, 'int').element([1, 2, 3])
>>> vec1 == vec2
True
>>> vec1 is vec2
False

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

 	NtuplesVector

NtuplesVector.show

	
NtuplesVector.show(title=None, method='scatter', show=False, fig=None, **kwargs)

	Display the function graphically.

	Parameters:	title : str, optional

Set the title of the figure

method : str, optional

1d methods:

‘plot’ : graph plot

‘scatter’ : point plot

show : bool, optional

If the plot should be showed now or deferred until later.

fig : matplotlib.figure.Figure

The figure to show in. Expected to be of same “style”, as
the figure given by this function. The most common use case
is that fig is the return value from an earlier call to
this function.

kwargs : {‘figsize’, ‘saveto’, ...}

Extra keyword arguments passed on to display method
See the Matplotlib functions for documentation of extra
options.

	Returns:	fig : matplotlib.figure.Figure

The resulting figure. It is also shown to the user.

See also

	odl.util.graphics.show_discrete_data

	Underlying implementation

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

Cn

	
odl.space.ntuples.Cn(size, dtype='complex128', **kwargs)

	The complex vector space [image: C^n] with vector multiplication.

	Parameters:	size : positive int

The number of dimensions of the space

dtype : object

The data type of the storage array. Can be provided in any
way the numpy.dtype function understands, most notably
as built-in type, as one of NumPy’s internal datatype
objects or as string.

Only complex floating-point data types are allowed.

kwargs : {‘weight’, ‘dist’, ‘norm’, ‘inner’, ‘dist_using_inner’}

See Fn

See also

	Fn

	n-tuples over a field [image: \mathbb{F}] with arbitrary scalar data type

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

Rn

	
odl.space.ntuples.Rn(size, dtype='float64', **kwargs)

	The real vector space [image: R^n] with vector multiplication.

	Parameters:	size : positive int

The number of dimensions of the space

dtype : object

The data type of the storage array. Can be provided in any
way the numpy.dtype function understands, most notably
as built-in type, as one of NumPy’s internal datatype
objects or as string.

Only real floating-point data types are allowed.

kwargs : {‘weight’, ‘dist’, ‘norm’, ‘inner’, ‘dist_using_inner’}

See Fn

See also

	Fn

	n-tuples over a field [image: \mathbb{F}] with arbitrary scalar data type

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

weighted_dist

	
odl.space.ntuples.weighted_dist(weight, exponent=2.0, use_inner=False)

	Weighted distance on Fn spaces as free function.

	Parameters:	weight : scalar or array-like

Weight of the distance. A scalar is interpreted as a
constant weight, a 1-dim. array as a weighting vector and a
2-dimensional array as a weighting matrix.

exponent : positive float

Exponent of the norm. If weight is a sparse matrix, only
1.0, 2.0 and inf are allowed.

use_inner : bool, optional

Calculate dist using the formula

[image: \lVert x-y \rVert^2 = \lVert x \rVert^2 + \lVert y \rVert^2 - 2\Re \langle x, y \rangle].

This avoids the creation of new arrays and is thus faster
for large arrays. On the downside, it will not evaluate to
exactly zero for equal (but not identical) [image: x] and
[image: y].

Can only be used if exponent is 2.0.

	Returns:	dist : callable

Distance function with given weight. Constant weightings
are applicable to spaces of any size, for arrays the sizes
of the weighting and the space must match.

See also

FnConstWeighting, FnVectorWeighting, FnMatrixWeighting

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

weighted_inner

	
odl.space.ntuples.weighted_inner(weight)

	Weighted inner product on Fn spaces as free function.

	Parameters:	weight : scalar or array-like

Weight of the inner product. A scalar is interpreted as a
constant weight, a 1-dim. array as a weighting vector and a
2-dimensional array as a weighting matrix.

	Returns:	inner : callable

Inner product function with given weight. Constant weightings
are applicable to spaces of any size, for arrays the sizes
of the weighting and the space must match.

See also

FnConstWeighting, FnVectorWeighting, FnMatrixWeighting

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	ntuples

weighted_norm

	
odl.space.ntuples.weighted_norm(weight, exponent=2.0)

	Weighted norm on Fn spaces as free function.

	Parameters:	weight : scalar or array-like

Weight of the norm. A scalar is interpreted as a
constant weight, a 1-dim. array as a weighting vector and a
2-dimensional array as a weighting matrix.

exponent : positive float

Exponent of the norm. If weight is a sparse matrix, only
1.0, 2.0 and inf are allowed.

	Returns:	norm : callable

Norm function with given weight. Constant weightings
are applicable to spaces of any size, for arrays the sizes
of the weighting and the space must match.

See also

FnConstWeighting, FnVectorWeighting, FnMatrixWeighting

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

space_utils

Utility functions for space implementations.

Functions

	vector(array[,dtype,impl])
	Create an n-tuples type vector from an array.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	space

 	space_utils

vector

	
odl.space.space_utils.vector(array, dtype=None, impl='numpy')

	Create an n-tuples type vector from an array.

	Parameters:	array : array-like

Array from which to create the vector. Scalars become
one-dimensional vectors.

dtype : object, optional

Set the data type of the vector manually with this option.
By default, the space type is inferred from the input data.

impl : {‘numpy’, ‘cuda’}

Implementation backend for the vector

	Returns:	vec : NtuplesBaseVector

Vector created from the input array. Its concrete type depends
on the provided arguments.

Notes

This is a convenience function and not intended for use in
speed-critical algorithms. It creates a NumPy array first, hence
especially CUDA vectors as input result in a large speed penalty.

Examples

>>> vector([1, 2, 3]) # No automatic cast to float
Fn(3, 'int').element([1, 2, 3])
>>> vector([1, 2, 3], dtype=float)
Rn(3).element([1.0, 2.0, 3.0])
>>> vector([1 + 1j, 2, 3 - 2j])
Cn(3).element([(1+1j), (2+0j), (3-2j)])

Non-scalar types are also supported:

>>> vector([True, False])
Ntuples(2, 'bool').element([True, False])

Scalars become a one-element vector:

>>> vector(0.0)
Rn(1).element([0.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

tomo

Tomography related operators and geometries.

Modules

	backends
	astra_cpu

	astra_cuda

	astra_setup

	stir_bindings

	geometry
	conebeam

	detector

	fanbeam

	geometry

	parallel

	operators
	ray_trafo

	util
	utility

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

backends

Back-ends for other libraries.

Modules

	astra_cpu
	astra_cpu_back_projector

	astra_cpu_forward_projector

	astra_cuda
	astra_cuda_back_projector

	astra_cuda_forward_projector

	astra_setup
	astra_algorithm

	astra_conebeam_2d_geom_to_vec

	astra_conebeam_3d_geom_to_vec

	astra_data

	astra_parallel_3d_geom_to_vec

	astra_projection_geometry

	astra_projector

	astra_volume_geometry

	stir_bindings
	References

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

astra_cpu

Backend for ASTRA using CPU.

Functions

	astra_cpu_back_projector(proj_data,...[,out])
	Run an ASTRA backward projection on the given data using the CPU.

	astra_cpu_forward_projector(vol_data,...[,out])
	Run an ASTRA forward projection on the given data using the CPU.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_cpu

astra_cpu_back_projector

	
odl.tomo.backends.astra_cpu.astra_cpu_back_projector(proj_data, geometry, reco_space, out=None)

	Run an ASTRA backward projection on the given data using the CPU.

	Parameters:	proj_data : DiscreteLpVector

Projection data to which the backward projector is applied

geometry : Geometry

Geometry defining the tomographic setup

reco_space : DiscreteLp

Space to which the calling operator maps

out : DiscreteLpVector or None, optional

Vector in the reconstruction space to which the result is written. If
None creates an element in the reconstruction space reco_space

	Returns:	out : reco_space element

Reconstruction data resulting from the application of the backward
projector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_cpu

astra_cpu_forward_projector

	
odl.tomo.backends.astra_cpu.astra_cpu_forward_projector(vol_data, geometry, proj_space, out=None)

	Run an ASTRA forward projection on the given data using the CPU.

	Parameters:	vol_data : DiscreteLpVector

Volume data to which the forward projector is applied

geometry : Geometry

Geometry defining the tomographic setup

proj_space : DiscreteLp

Space to which the calling operator maps

out : DiscreteLpVector, optional

Vector in the projection space to which the result is written. If
None creates an element in the projection space proj_space

	Returns:	out : proj_space element

Projection data resulting from the application of the projector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

astra_cuda

Backend for ASTRA using CUDA

Functions

	astra_cuda_back_projector(proj_data,...[,out])
	Run an ASTRA backward projection on the given data using the GPU.

	astra_cuda_forward_projector(vol_data,...)
	Run an ASTRA forward projection on the given data using the GPU.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_cuda

astra_cuda_back_projector

	
odl.tomo.backends.astra_cuda.astra_cuda_back_projector(proj_data, geometry, reco_space, out=None)

	Run an ASTRA backward projection on the given data using the GPU.

	Parameters:	proj_data : DiscreteLp element

Projection data to which the backward projector is applied

geometry : Geometry

Geometry defining the tomographic setup

reco_space : DiscreteLp

Space to which the calling operator maps

out : DiscreteLpVector, optional

Vector in the reconstruction space to which the result is written.
If None creates an element in the reconstruction space
reco_space

	Returns:	out : reco_space element

Reconstruction data resulting from the application of the backward
projector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_cuda

astra_cuda_forward_projector

	
odl.tomo.backends.astra_cuda.astra_cuda_forward_projector(vol_data, geometry, proj_space, out=None)

	Run an ASTRA forward projection on the given data using the GPU.

	Parameters:	vol_data : DiscreteLpVector

Volume data to which the projector is applied

geometry : Geometry

Geometry defining the tomographic setup

proj_space : DiscreteLp

Space to which the calling operator maps

out : DiscreteLpVector, optional

Vector in the projection space to which the result is written. If
None creates an element in the projection space proj_space

	Returns:	out : proj_space element

Projection data resulting from the application of the projector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

astra_setup

Helper functions to prepare ASTRA algorithms.

This module contains utility functions to convert data structures from the
ODL geometry representation to ASTRA’s data structures, including:

	volume geometries

	projection geometries

	create vectors from geometries

	data arrays

	projectors

	algorithm configuration dictionaries

ASTRA documentation on sourceforge [https://sourceforge.net/p/astra-toolbox/wiki].

ASTRA on github [https://github.com/astra-toolbox/].

Functions

	astra_algorithm(direction,ndim,vol_id,...)
	Create an ASTRA algorithm object to run the projector.

	astra_conebeam_2d_geom_to_vec(geometry)
	Create vectors for ASTRA projection geometries from ODL geometry.

	astra_conebeam_3d_geom_to_vec(geometry)
	Create vectors for ASTRA projection geometries from ODL geometry.

	astra_data(astra_geom,datatype[,data,ndim])
	Create an ASTRA data structure.

	astra_parallel_3d_geom_to_vec(geometry)
	Create vectors for ASTRA projection geometries from ODL geometry.

	astra_projection_geometry(geometry)
	Create an ASTRA projection geometry from an ODL geometry object.

	astra_projector(vol_interp,astra_vol_geom,...)
	Create an ASTRA projector configuration dictionary.

	astra_volume_geometry(discr_reco)
	Create an ASTRA volume geometry from the discretized domain.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_setup

astra_algorithm

	
odl.tomo.backends.astra_setup.astra_algorithm(direction, ndim, vol_id, sino_id, proj_id, impl)

	Create an ASTRA algorithm object to run the projector.

	Parameters:	direction : {‘forward’, ‘backward’}

Apply the forward projection if ‘forward’, otherwise the back
projection

ndim : {2, 3}

Number of dimensions of the projector

vol_id : int

ASTRA ID of the volume data object

sino_id : int

ASTRA ID of the projection data object

proj_id : int

ASTRA ID of the projector

impl : {‘cpu’, ‘cuda’}

Implementation of the projector

	Returns:	id : int

ASTRA internal ID for the new algorithm structure

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_setup

astra_conebeam_2d_geom_to_vec

	
odl.tomo.backends.astra_setup.astra_conebeam_2d_geom_to_vec(geometry)

	Create vectors for ASTRA projection geometries from ODL geometry.

The 2D vectors are used to create an ASTRA projection geometry for
cone beam geometries (‘flat_vec’) with helical acquisition curves.

Output vectors:

	Each row of vectors corresponds to a single projection, and consists of:

	(srcX, srcY, dX, dY, uX, uY)
src : the ray source
d : the center of the detector
u : the vector between the centers of detector pixels 0 and 1

	Parameters:	geometry : Geometry

The ODL geometry instance used to create the ASTRA geometry

	Returns:	vectors : numpy.ndarray

Numpy array of shape (number of angles, 6)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_setup

astra_conebeam_3d_geom_to_vec

	
odl.tomo.backends.astra_setup.astra_conebeam_3d_geom_to_vec(geometry)

	Create vectors for ASTRA projection geometries from ODL geometry.

The 3D vectors are used to create an ASTRA projection geometry for
cone beam geometries (‘cone_vec’) with helical acquisition curves.

Output vectors:

	Each row of vectors corresponds to a single projection, and consists of:

	(srcX, srcY, srcZ, dX, dY, dZ, uX, uY, uZ, vX, vY, vZ):
src : the ray source
d : the center of the detector
u : the vector from detector pixel (0,0) to (0,1)
v : the vector from detector pixel (0,0) to (1,0)

	Parameters:	geometry : Geometry

The ODL geometry instance used to create the ASTRA geometry

	Returns:	vectors : numpy.ndarray

Numpy array of shape (number of angles, 12)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_setup

astra_data

	
odl.tomo.backends.astra_setup.astra_data(astra_geom, datatype, data=None, ndim=2)

	Create an ASTRA data structure.

	Parameters:	astra_geom : dict

ASTRA geometry object for the data creator, must correspond to the
given data type

datatype : {‘volume’, ‘projection’}

Type of the data container

data : DiscreteLpVector, optional

Data for the initialization of the data structure. If None creates
an ASTRA data object filled with zeros

ndim : {2, 3}, optional

Dimension of the data. If data is not None, this parameter
has no effect.

	Returns:	id : int

ASTRA internal ID for the new data structure

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_setup

astra_parallel_3d_geom_to_vec

	
odl.tomo.backends.astra_setup.astra_parallel_3d_geom_to_vec(geometry)

	Create vectors for ASTRA projection geometries from ODL geometry.

The 3D vectors are used to create an ASTRA projection geometry for
parallel beam geometries (‘parallel3d_vec’).

Output vectors:

	Each row of vectors corresponds to a single projection, and consists of:

	(rayX, rayY, rayZ, dX, dY, dZ, uX, uY, uZ, vX, vY, vZ)
ray : the ray direction
d : the center of the detector
u : the vector from detector pixel (0,0) to (0,1)
v : the vector from detector pixel (0,0) to (1,0)

	Parameters:	geometry : Geometry

The ODL geometry instance used to create the ASTRA geometry

	Returns:	vectors : numpy.ndarray

Numpy array of shape (number of angles, 12)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_setup

astra_projection_geometry

	
odl.tomo.backends.astra_setup.astra_projection_geometry(geometry)

	Create an ASTRA projection geometry from an ODL geometry object.

As of ASTRA version 1.7, the length values are not required any more to be
rescaled for 3D geometries and non-unit (but isotropic) voxel sizes.

	Parameters:	geometry : instance of Geometry

The ODL geometry instance used to create the projection geometry

	Returns:	proj_geom : dict

Dictionary defining the ASTRA projection geometry

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_setup

astra_projector

	
odl.tomo.backends.astra_setup.astra_projector(vol_interp, astra_vol_geom, astra_proj_geom, ndim, impl)

	Create an ASTRA projector configuration dictionary.

	Parameters:	vol_interp : {‘nearest’, ‘linear’}

Interpolation type of the volume discretization

astra_vol_geom : dict

ASTRA volume geometry dictionary

astra_proj_geom : dict

ASTRA projection geometry dictionary

ndim : {2, 3}

Number of dimensions of the projector

impl : {‘cpu’, ‘cuda’}

Implementation of the projector

	Returns:	proj_id : int

ASTRA reference ID to the ASTRA dict with initialized ‘type’ key

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	astra_setup

astra_volume_geometry

	
odl.tomo.backends.astra_setup.astra_volume_geometry(discr_reco)

	Create an ASTRA volume geometry from the discretized domain.

From the ASTRA documentation:

In all 3D geometries, the coordinate system is defined around the
reconstruction volume. The center of the reconstruction volume is the
origin, and the sides of the voxels in the volume have length 1.

All dimensions in the projection geometries are relative to this unit
length.

	Parameters:	discr_reco : DiscreteLp

Discretization of an L2 space on the reconstruction domain.
It must be 2- or 3-dimensional and sampled by a regular grid.

	Returns:	astra_geom : dict

The ASTRA volume geometry

	Raises:	NotImplementedError

if the cell sizes are not the same in each dimension

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

stir_bindings

Back-end for STIR: Software for Tomographic Reconstruction

Back and forward projectors for PET.

ForwardProjectorByBinWrapper and BackProjectorByBinWrapper are general
objects of STIR projectors and back-projectors, these can be used to wrap a
given projector.

stir_projector_from_file allows users a easy way to create a
ForwardProjectorByBinWrapper by giving file paths to the required templates.

References

See the STIR webpage [http://stir.sourceforge.net] for more information and the STIR doc [http://stir.sourceforge.net/documentation/doxy/html/] for info on
the STIR classes used here.

Classes

	BackProjectorByBinWrapper(dom,ran,volume,...)
	A back projector using STIR.

	ForwardProjectorByBinWrapper(dom,ran,...)
	A forward projector using STIR.

	StirVerbosity(verbosity)
	Context manager setting STIR verbosity to a fixed level.

Functions

	stir_projector_from_file(volume_file,...)
	Create a STIR projector from given template files.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

BackProjectorByBinWrapper

	
class odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper(dom, ran, volume, proj_data, back_projector=None, adjoint=None)

	Bases: odl.operator.operator.Operator

A back projector using STIR.

Attributes

	adjoint
	The operator adjoint (abstract).

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(projections,out)
	Back project.

	derivative(point)
	Return the operator derivative at point.

	
__init__(dom, ran, volume, proj_data, back_projector=None, adjoint=None)

	Initialize a new instance.

	Parameters:	dom : DiscreteLp

Projection space. Needs to have the same shape as
proj_data.to_array().shape().

ran : DiscreteLp

Volume of the projection. Needs to have the same shape as
volume.shape().

volume : stir.FloatVoxelsOnCartesianGrid

The stir volume to use in the forward projection

proj_data : stir.ProjData

The stir description of the projection.

back_projector : stir.BackProjectorByBin, optional

A pre-initialized back-projector.

adjoint : ForwardProjectorByBinWrapper, optional

A pre-initialized adjoint.

Notes

See STIR doc [http://stir.sourceforge.net/documentation/doxy/html/] for info on the STIR classes.

References

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	BackProjectorByBinWrapper

BackProjectorByBinWrapper.adjoint

	
BackProjectorByBinWrapper.adjoint

	The operator adjoint (abstract).

	Raises:	OpNotImplementedError

Since the adjoint cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	BackProjectorByBinWrapper

BackProjectorByBinWrapper.domain

	
BackProjectorByBinWrapper.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	BackProjectorByBinWrapper

BackProjectorByBinWrapper.inverse

	
BackProjectorByBinWrapper.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	BackProjectorByBinWrapper

BackProjectorByBinWrapper.is_functional

	
BackProjectorByBinWrapper.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	BackProjectorByBinWrapper

BackProjectorByBinWrapper.is_linear

	
BackProjectorByBinWrapper.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	BackProjectorByBinWrapper

BackProjectorByBinWrapper.range

	
BackProjectorByBinWrapper.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	BackProjectorByBinWrapper

BackProjectorByBinWrapper.__call__

	
BackProjectorByBinWrapper.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	BackProjectorByBinWrapper

BackProjectorByBinWrapper._call

	
BackProjectorByBinWrapper._call(projections, out)

	Back project.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	BackProjectorByBinWrapper

BackProjectorByBinWrapper.derivative

	
BackProjectorByBinWrapper.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

ForwardProjectorByBinWrapper

	
class odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper(dom, ran, volume, proj_data, projector=None, adjoint=None)

	Bases: odl.operator.operator.Operator

A forward projector using STIR.

Uses “ForwardProjectorByBinUsingProjMatrixByBin” as a projector.

Attributes

	adjoint
	The back-projector associated with this operator.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(volume,out)
	Forward project a volume.

	derivative(point)
	Return the operator derivative at point.

	
__init__(dom, ran, volume, proj_data, projector=None, adjoint=None)

	Initialize a new instance.

	Parameters:	dom : DiscreteLp

Volume of the projection. Needs to have the same shape as
volume.shape().

ran : DiscreteLp

Projection space. Needs to have the same shape as
proj_data.to_array().shape().

volume : stir.FloatVoxelsOnCartesianGrid

The stir volume to use in the forward projection

proj_data : stir.ProjData

The stir description of the projection.

projector : stir.ForwardProjectorByBin, optional

A pre-initialized projector.

adjoint : BackProjectorByBinWrapper, optional

A pre-initialized adjoint.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	ForwardProjectorByBinWrapper

ForwardProjectorByBinWrapper.adjoint

	
ForwardProjectorByBinWrapper.adjoint

	The back-projector associated with this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	ForwardProjectorByBinWrapper

ForwardProjectorByBinWrapper.domain

	
ForwardProjectorByBinWrapper.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	ForwardProjectorByBinWrapper

ForwardProjectorByBinWrapper.inverse

	
ForwardProjectorByBinWrapper.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	ForwardProjectorByBinWrapper

ForwardProjectorByBinWrapper.is_functional

	
ForwardProjectorByBinWrapper.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	ForwardProjectorByBinWrapper

ForwardProjectorByBinWrapper.is_linear

	
ForwardProjectorByBinWrapper.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	ForwardProjectorByBinWrapper

ForwardProjectorByBinWrapper.range

	
ForwardProjectorByBinWrapper.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	ForwardProjectorByBinWrapper

ForwardProjectorByBinWrapper.__call__

	
ForwardProjectorByBinWrapper.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	ForwardProjectorByBinWrapper

ForwardProjectorByBinWrapper._call

	
ForwardProjectorByBinWrapper._call(volume, out)

	Forward project a volume.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

 	ForwardProjectorByBinWrapper

ForwardProjectorByBinWrapper.derivative

	
ForwardProjectorByBinWrapper.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

StirVerbosity

	
class odl.tomo.backends.stir_bindings.StirVerbosity(verbosity)

	Bases: object

Context manager setting STIR verbosity to a fixed level.

Methods

	__eq__
	Return self==value.

	
__init__(verbosity)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	backends

 	stir_bindings

stir_projector_from_file

	
odl.tomo.backends.stir_bindings.stir_projector_from_file(volume_file, projection_file)

	Create a STIR projector from given template files.

	Parameters:	volume_file : str

Full file path to the STIR input file containing information on the
volume. This is usually a ‘.hv’ file. For STIR reasons,
a ‘.v’ file is also needed.

projection_file : str

Full file path to the STIR input file with information on the
projection data. This is usually a ‘.hs’ file. For STIR reasons,
a ‘.s’ file is also needed.

	Returns:	projector : ForwardProjectorByBinWrapper

A STIR forward projector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

geometry

Modules

	conebeam
	CircularConeFlatGeometry

	HelicalConeFlatGeometry

	detector
	CircleSectionDetector

	Detector

	Flat1dDetector

	Flat2dDetector

	FlatDetector

	fanbeam
	FanFlatGeometry

	geometry
	AxisOrientedGeometry

	DivergentBeamGeometry

	Geometry

	parallel
	Parallel2dGeometry

	Parallel3dAxisGeometry

	Parallel3dGeometry

	ParallelGeometry

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

conebeam

Cone beam geometries in 3 dimensions.

Classes

	CircularConeFlatGeometry(apart,dpart,...)
	Cone beam geometry with circular source curve and flat detector.

	HelicalConeFlatGeometry(apart,dpart,...[,...])
	Cone beam geometry with helical source curve and flat detector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

CircularConeFlatGeometry

	
class odl.tomo.geometry.conebeam.CircularConeFlatGeometry(apart, dpart, src_radius, det_radius, axis=[0, 0, 1], **kwargs)

	Bases: odl.tomo.geometry.conebeam.HelicalConeFlatGeometry

Cone beam geometry with circular source curve and flat detector.

The source moves along a circle with radius src_radius in the
plane perpendicular to a fixed axis. The detector reference
point is opposite to the source, i.e. in the same plane on a circle
with radius det_rad at maximum distance to the source. This
implies that it lies on the line through the source point and
the intersection of the axis with the azimuthal plane.

The motion parameter is the 1d rotation angle parameterizing source
and detector positions simultaneously.

In the standard configuration, the rotation axis is (0, 0, 1),
the initial source-to-detector vector is (1, 0, 0), and the
initial detector axes are [(0, 1, 0), (0, 0, 1)].

See also

	HelicalConeFlatGeometry

	General case with motion in z direction

Attributes

	axis
	The normalized axis of rotation, a 3-element vector.

	det_grid
	Sampling grid of det_params.

	det_params
	Continuous detector parameter range, an IntervalProd.

	det_partition
	Partition of the detector parameter set into subsets.

	det_radius
	Detector circle radius of this geometry.

	detector
	Detector representation of this geometry.

	grid
	Joined sampling grid for motion and detector.

	implementation_cache
	Dictionary acting as a cache for this geometry.

	motion_grid
	Sampling grid of motion_params.

	motion_params
	Continuous motion parameter range, an IntervalProd.

	motion_partition
	Partition of the motion parameter set into subsets.

	ndim
	The number of dimensions of the geometry.

	params
	Joined parameter set for motion and detector.

	partition
	Joined parameter set partition for motion and detector.

	pitch
	Constant vertical distance traversed in a full rotation.

	pitch_offset
	Vertical offset at angle=0

	src_radius
	Source circle radius of this geometry.

Methods

	__eq__
	Return self==value.

	det_point_position(mpar,dpar)
	The detector point position function.

	det_refpoint(angle)
	Return the detector reference point position at angle.

	det_to_src(mpar,dpar[,normalized])
	Vector pointing from a detector location to the source.

	rotation_matrix(angle)
	The detector rotation function.

	src_position(angle)
	Return the source position at angle.

	
__init__(apart, dpart, src_radius, det_radius, axis=[0, 0, 1], **kwargs)

	Initialize a new instance.

	Parameters:	apart : 1-dim. RectPartition

Partition of the angle interval

dpart : 2-dim. RectPartition

Partition of the detector parameter rectangle

src_radius : nonnegative float

Radius of the source circle

det_radius : nonnegative float

Radius of the detector circle

axis : array-like, shape (3,), optional

Fixed rotation axis, the symmetry axis of the helix

src_to_det_init : array-like, shape (2,), optional

Initial state of the vector pointing from source to detector
reference point. The zero vector is not allowed.
By default, a perpendicular_vector to axis is used.

det_init_axes : 2-tuple of array-like (shape (2,)), optional

Initial axes defining the detector orientation.
By default, the normalized cross product of axis and
src_to_det_init is used as first axis and axis as
second.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.axis

	
CircularConeFlatGeometry.axis

	The normalized axis of rotation, a 3-element vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.det_grid

	
CircularConeFlatGeometry.det_grid

	Sampling grid of det_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.det_params

	
CircularConeFlatGeometry.det_params

	Continuous detector parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.det_partition

	
CircularConeFlatGeometry.det_partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.det_radius

	
CircularConeFlatGeometry.det_radius

	Detector circle radius of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.detector

	
CircularConeFlatGeometry.detector

	Detector representation of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.grid

	
CircularConeFlatGeometry.grid

	Joined sampling grid for motion and detector.

By convention, the motion grid comes before the detector grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.implementation_cache

	
CircularConeFlatGeometry.implementation_cache

	Dictionary acting as a cache for this geometry.

Intended for reuse of computations. Implementations that use this
storage should take care of unique naming.

	Returns:	implementations : dict

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.motion_grid

	
CircularConeFlatGeometry.motion_grid

	Sampling grid of motion_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.motion_params

	
CircularConeFlatGeometry.motion_params

	Continuous motion parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.motion_partition

	
CircularConeFlatGeometry.motion_partition

	Partition of the motion parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.ndim

	
CircularConeFlatGeometry.ndim

	The number of dimensions of the geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.params

	
CircularConeFlatGeometry.params

	Joined parameter set for motion and detector.

By convention, the motion parameters come before the detector
parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.partition

	
CircularConeFlatGeometry.partition

	Joined parameter set partition for motion and detector.

Returns a RectPartition with the detector partition inserted
after the motion partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.pitch

	
CircularConeFlatGeometry.pitch

	Constant vertical distance traversed in a full rotation.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.pitch_offset

	
CircularConeFlatGeometry.pitch_offset

	Vertical offset at angle=0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.src_radius

	
CircularConeFlatGeometry.src_radius

	Source circle radius of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.det_point_position

	
CircularConeFlatGeometry.det_point_position(mpar, dpar)

	The detector point position function.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

	Returns:	pos : numpy.ndarray, shape (ndim,)

The source position, a ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.det_refpoint

	
CircularConeFlatGeometry.det_refpoint(angle)

	Return the detector reference point position at angle.

For an angle phi, the detector position is given by:

ref(phi) = det_rad * rot_matrix(phi) * src_to_det_init +
 (pitch_offset + pitch * phi) * axis

where src_to_det_init is the initial unit vector pointing
from source to detector.

	Parameters:	angle : float

Rotation angle given in radians, must be contained in
this geometry’s motion_params

	Returns:	point : numpy.ndarray, shape (3,)

Detector reference point corresponding to the given angle

See also

rotation_matrix

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.det_to_src

	
CircularConeFlatGeometry.det_to_src(mpar, dpar, normalized=True)

	Vector pointing from a detector location to the source.

A function of the motion and detector parameters.

The default implementation uses the det_point_position and
src_position functions. Implementations can override this, for
example if no source position is given.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

normalized : bool, optional

If True, return a normalized (unit) vector.

	Returns:	vec : numpy.ndarray, shape (ndim,)

(Unit) vector pointing from the detector to the source

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.rotation_matrix

	
CircularConeFlatGeometry.rotation_matrix(angle)

	The detector rotation function.

Returns the matrix for rotating a vector in 3d by an angle angle
about the rotation axis given by the property axis according to
the right hand rule.

The matrix is computed according to
Rodrigues’ rotation formula [https://en.wikipedia.org/wiki/Rodrigues’_rotation_formula].

	Parameters:	angle : float

The motion parameter given in radian. It must be
contained in this geometry’s motion_params.

	Returns:	rot_mat : numpy.ndarray, shape (3, 3)

The rotation matrix mapping the standard basis vectors in
the fixed (“lab”) coordinate system to the basis vectors of
the local coordinate system of the detector reference point,
expressed in the fixed system.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	CircularConeFlatGeometry

CircularConeFlatGeometry.src_position

	
CircularConeFlatGeometry.src_position(angle)

	Return the source position at angle.

For an angle phi, the source position is given by:

src(phi) = -src_rad * rot_matrix(phi) * src_to_det_init +
 (pitch_offset + pitch * phi) * axis

where src_to_det_init is the initial unit vector pointing
from source to detector.

	Parameters:	angle : float

Rotation angle given in radians, must be contained in
this geometry’s motion_params

	Returns:	point : numpy.ndarray, shape (3,)

Detector reference point corresponding to the given angle

See also

rotation_matrix

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

HelicalConeFlatGeometry

	
class odl.tomo.geometry.conebeam.HelicalConeFlatGeometry(apart, dpart, src_radius, det_radius, pitch, axis=[0, 0, 1], **kwargs)

	Bases: odl.tomo.geometry.geometry.DivergentBeamGeometry, odl.tomo.geometry.geometry.AxisOrientedGeometry

Cone beam geometry with helical source curve and flat detector.

The source moves along a spiral oriented along a fixed axis, with
radius src_radius in the azimuthal plane and a given pitch.
The detector reference point is opposite to the source, i.e. in
the point at distance src_rad + det_rad on the line in the
azimuthal plane through the source point and axis.

The motion parameter is the 1d rotation angle parameterizing source
and detector positions simultaneously.

In the standard configuration, the rotation axis is (0, 0, 1),
the initial source-to-detector vector is (1, 0, 0), and the
initial detector axes are [(0, 1, 0), (0, 0, 1)].

See also

	CircularConeFlatGeometry

	Case with zero pitch

Attributes

	axis
	The normalized axis of rotation, a 3-element vector.

	det_grid
	Sampling grid of det_params.

	det_params
	Continuous detector parameter range, an IntervalProd.

	det_partition
	Partition of the detector parameter set into subsets.

	det_radius
	Detector circle radius of this geometry.

	detector
	Detector representation of this geometry.

	grid
	Joined sampling grid for motion and detector.

	implementation_cache
	Dictionary acting as a cache for this geometry.

	motion_grid
	Sampling grid of motion_params.

	motion_params
	Continuous motion parameter range, an IntervalProd.

	motion_partition
	Partition of the motion parameter set into subsets.

	ndim
	The number of dimensions of the geometry.

	params
	Joined parameter set for motion and detector.

	partition
	Joined parameter set partition for motion and detector.

	pitch
	Constant vertical distance traversed in a full rotation.

	pitch_offset
	Vertical offset at angle=0

	src_radius
	Source circle radius of this geometry.

Methods

	__eq__
	Return self==value.

	det_point_position(mpar,dpar)
	The detector point position function.

	det_refpoint(angle)
	Return the detector reference point position at angle.

	det_to_src(mpar,dpar[,normalized])
	Vector pointing from a detector location to the source.

	rotation_matrix(angle)
	The detector rotation function.

	src_position(angle)
	Return the source position at angle.

	
__init__(apart, dpart, src_radius, det_radius, pitch, axis=[0, 0, 1], **kwargs)

	Initialize a new instance.

	Parameters:	apart : 1-dim. RectPartition

Partition of the angle interval

dpart : 2-dim. RectPartition

Partition of the detector parameter rectangle

src_radius : nonnegative float

Radius of the source circle

det_radius : nonnegative float

Radius of the detector circle

pitch : float

Constant vertical distance that a point on the helix
traverses when increasing the angle parameter by 2 * pi

axis : array-like, shape (3,), optional

Fixed rotation axis, the symmetry axis of the helix

src_to_det_init : array-like, shape (2,), optional

Initial state of the vector pointing from source to detector
reference point. The zero vector is not allowed.
By default, a perpendicular_vector to axis is used.

det_init_axes : 2-tuple of array-like (shape (2,)), optional

Initial axes defining the detector orientation.
By default, the normalized cross product of axis and
src_to_det_init is used as first axis and axis as
second.

pitch_offset : float, optional

Offset along the axis at angle=0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.axis

	
HelicalConeFlatGeometry.axis

	The normalized axis of rotation, a 3-element vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.det_grid

	
HelicalConeFlatGeometry.det_grid

	Sampling grid of det_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.det_params

	
HelicalConeFlatGeometry.det_params

	Continuous detector parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.det_partition

	
HelicalConeFlatGeometry.det_partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.det_radius

	
HelicalConeFlatGeometry.det_radius

	Detector circle radius of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.detector

	
HelicalConeFlatGeometry.detector

	Detector representation of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.grid

	
HelicalConeFlatGeometry.grid

	Joined sampling grid for motion and detector.

By convention, the motion grid comes before the detector grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.implementation_cache

	
HelicalConeFlatGeometry.implementation_cache

	Dictionary acting as a cache for this geometry.

Intended for reuse of computations. Implementations that use this
storage should take care of unique naming.

	Returns:	implementations : dict

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.motion_grid

	
HelicalConeFlatGeometry.motion_grid

	Sampling grid of motion_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.motion_params

	
HelicalConeFlatGeometry.motion_params

	Continuous motion parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.motion_partition

	
HelicalConeFlatGeometry.motion_partition

	Partition of the motion parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.ndim

	
HelicalConeFlatGeometry.ndim

	The number of dimensions of the geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.params

	
HelicalConeFlatGeometry.params

	Joined parameter set for motion and detector.

By convention, the motion parameters come before the detector
parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.partition

	
HelicalConeFlatGeometry.partition

	Joined parameter set partition for motion and detector.

Returns a RectPartition with the detector partition inserted
after the motion partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.pitch

	
HelicalConeFlatGeometry.pitch

	Constant vertical distance traversed in a full rotation.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.pitch_offset

	
HelicalConeFlatGeometry.pitch_offset

	Vertical offset at angle=0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.src_radius

	
HelicalConeFlatGeometry.src_radius

	Source circle radius of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.det_point_position

	
HelicalConeFlatGeometry.det_point_position(mpar, dpar)

	The detector point position function.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

	Returns:	pos : numpy.ndarray, shape (ndim,)

The source position, a ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.det_refpoint

	
HelicalConeFlatGeometry.det_refpoint(angle)

	Return the detector reference point position at angle.

For an angle phi, the detector position is given by:

ref(phi) = det_rad * rot_matrix(phi) * src_to_det_init +
 (pitch_offset + pitch * phi) * axis

where src_to_det_init is the initial unit vector pointing
from source to detector.

	Parameters:	angle : float

Rotation angle given in radians, must be contained in
this geometry’s motion_params

	Returns:	point : numpy.ndarray, shape (3,)

Detector reference point corresponding to the given angle

See also

rotation_matrix

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.det_to_src

	
HelicalConeFlatGeometry.det_to_src(mpar, dpar, normalized=True)

	Vector pointing from a detector location to the source.

A function of the motion and detector parameters.

The default implementation uses the det_point_position and
src_position functions. Implementations can override this, for
example if no source position is given.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

normalized : bool, optional

If True, return a normalized (unit) vector.

	Returns:	vec : numpy.ndarray, shape (ndim,)

(Unit) vector pointing from the detector to the source

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.rotation_matrix

	
HelicalConeFlatGeometry.rotation_matrix(angle)

	The detector rotation function.

Returns the matrix for rotating a vector in 3d by an angle angle
about the rotation axis given by the property axis according to
the right hand rule.

The matrix is computed according to
Rodrigues’ rotation formula [https://en.wikipedia.org/wiki/Rodrigues’_rotation_formula].

	Parameters:	angle : float

The motion parameter given in radian. It must be
contained in this geometry’s motion_params.

	Returns:	rot_mat : numpy.ndarray, shape (3, 3)

The rotation matrix mapping the standard basis vectors in
the fixed (“lab”) coordinate system to the basis vectors of
the local coordinate system of the detector reference point,
expressed in the fixed system.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	conebeam

 	HelicalConeFlatGeometry

HelicalConeFlatGeometry.src_position

	
HelicalConeFlatGeometry.src_position(angle)

	Return the source position at angle.

For an angle phi, the source position is given by:

src(phi) = -src_rad * rot_matrix(phi) * src_to_det_init +
 (pitch_offset + pitch * phi) * axis

where src_to_det_init is the initial unit vector pointing
from source to detector.

	Parameters:	angle : float

Rotation angle given in radians, must be contained in
this geometry’s motion_params

	Returns:	point : numpy.ndarray, shape (3,)

Detector reference point corresponding to the given angle

See also

rotation_matrix

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

detector

Detectors.

Classes

	CircleSectionDetector(part,circ_rad)
	A 1d detector given by a section of a circle.

	Detector(part)
	Abstract detector class.

	Flat1dDetector(part,axis)
	A 1d line detector aligned with axis.

	Flat2dDetector(part,axes)
	A 2d flat panel detector aligned with axes.

	FlatDetector(part)
	Abstract class for flat detectors in 2 and 3 dimensions.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

CircleSectionDetector

	
class odl.tomo.geometry.detector.CircleSectionDetector(part, circ_rad)

	Bases: odl.tomo.geometry.detector.Detector

A 1d detector given by a section of a circle.

The reference circular section is part of a circle with radius r,
which is shifted by the vector (-r, 0) such that the parameter
value 0 results in the detector reference point (0, 0).

Attributes

	circ_rad
	Circle radius of this detector.

	grid
	Sampling grid of the parameters.

	ndim
	Number of dimensions of this detector (0, 1 or 2).

	params
	Surface parameter set of this detector.

	partition
	Partition of the detector parameter set into subsets.

	shape
	Number of subsets (pixels) of the detector per axis.

	size
	Total number of pixels.

Methods

	__eq__
	Return self==value.

	surface(param)
	The parametrization of the detector reference surface.

	surface_deriv(param)
	The partial derivative(s) of the surface parametrization.

	surface_measure(param)
	The constant density function of the surface measure.

	
__init__(part, circ_rad)

	Initialize a new instance.

	Parameters:	part : 1-dim. RectPartition

Partition of the parameter interval, corresponding to the
angle sections along the line

circ_rad : positive float

Radius of the circle along which the detector is curved

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	CircleSectionDetector

CircleSectionDetector.circ_rad

	
CircleSectionDetector.circ_rad

	Circle radius of this detector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	CircleSectionDetector

CircleSectionDetector.grid

	
CircleSectionDetector.grid

	Sampling grid of the parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	CircleSectionDetector

CircleSectionDetector.ndim

	
CircleSectionDetector.ndim

	Number of dimensions of this detector (0, 1 or 2).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	CircleSectionDetector

CircleSectionDetector.params

	
CircleSectionDetector.params

	Surface parameter set of this detector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	CircleSectionDetector

CircleSectionDetector.partition

	
CircleSectionDetector.partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	CircleSectionDetector

CircleSectionDetector.shape

	
CircleSectionDetector.shape

	Number of subsets (pixels) of the detector per axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	CircleSectionDetector

CircleSectionDetector.size

	
CircleSectionDetector.size

	Total number of pixels.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	CircleSectionDetector

CircleSectionDetector.surface

	
CircleSectionDetector.surface(param)

	The parametrization of the detector reference surface.

	Parameters:	param : element of params

The parameter value where to evaluate the function

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	CircleSectionDetector

CircleSectionDetector.surface_deriv

	
CircleSectionDetector.surface_deriv(param)

	The partial derivative(s) of the surface parametrization.

	Parameters:	param : element of params

The parameter value where to evaluate the function

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	CircleSectionDetector

CircleSectionDetector.surface_measure

	
CircleSectionDetector.surface_measure(param)

	The constant density function of the surface measure.

	Parameters:	param : element of params

The parameter value where to evaluate the function

	Returns:	measure : float

The constant density r, equal to the length of the
tangent to the detector circle at any point

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

Detector

	
class odl.tomo.geometry.detector.Detector(part)

	Bases: object

Abstract detector class.

A detector is described by

	a set of parameters for surface parametrization (including sampling),

	a function mapping a surface parameter to the location of a detector
point relative to its reference point,

	optionally a surface measure function.

Attributes

	grid
	Sampling grid of the parameters.

	ndim
	Number of dimensions of this detector (0, 1 or 2).

	params
	Surface parameter set of this detector.

	partition
	Partition of the detector parameter set into subsets.

	shape
	Number of subsets (pixels) of the detector per axis.

	size
	Total number of pixels.

Methods

	__eq__
	Return self==value.

	surface(param)
	Parametrization of the detector reference surface.

	surface_deriv(param)
	Partial derivative(s) of the surface parametrization.

	surface_measure(param)
	Density function of the surface measure.

	
__init__(part)

	Initialize a new instance.

	Parameters:	part : RectPartition

Partition of the detector parameter set (pixelization).
It determines dimension, parameter range and discretization.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Detector

Detector.grid

	
Detector.grid

	Sampling grid of the parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Detector

Detector.ndim

	
Detector.ndim

	Number of dimensions of this detector (0, 1 or 2).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Detector

Detector.params

	
Detector.params

	Surface parameter set of this detector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Detector

Detector.partition

	
Detector.partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Detector

Detector.shape

	
Detector.shape

	Number of subsets (pixels) of the detector per axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Detector

Detector.size

	
Detector.size

	Total number of pixels.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Detector

Detector.surface

	
Detector.surface(param)

	Parametrization of the detector reference surface.

	Parameters:	param : element of params

Parameter value where to evaluate the function

	Returns:	point :

Spatial location of the detector point corresponding to
param

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Detector

Detector.surface_deriv

	
Detector.surface_deriv(param)

	Partial derivative(s) of the surface parametrization.

	Parameters:	param : element of params

The parameter value where to evaluate the function

	Returns:	deriv :

Vector (ndim=1) or sequence of vectors corresponding
to the partial derivatives at param

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Detector

Detector.surface_measure

	
Detector.surface_measure(param)

	Density function of the surface measure.

This is the default implementation relying on the surface_deriv
method. For ndim == 1, the density is given by the Arc
length, for ndim == 2, it is the length of the cross product
of the partial derivatives of the parametrization, see Wikipedia’s
Surface area article.

	Parameters:	param : element of params

The parameter value where to evaluate the function

	Returns:	measure : float

The density value at the given parameter

https://en.wikipedia.org/wiki/Curve#Lengths_of_curves

https://en.wikipedia.org/wiki/Surface_area

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

Flat1dDetector

	
class odl.tomo.geometry.detector.Flat1dDetector(part, axis)

	Bases: odl.tomo.geometry.detector.FlatDetector

A 1d line detector aligned with axis.

Attributes

	axis
	Normalized principal axis of the detector.

	grid
	Sampling grid of the parameters.

	ndim
	Number of dimensions of this detector (0, 1 or 2).

	normal
	Unit vector perpendicular to the detector.

	params
	Surface parameter set of this detector.

	partition
	Partition of the detector parameter set into subsets.

	shape
	Number of subsets (pixels) of the detector per axis.

	size
	Total number of pixels.

Methods

	__eq__
	Return self==value.

	surface(param)
	The parametrization of the (1d) detector reference surface.

	surface_deriv([param])
	The derivative of the surface parametrization.

	surface_measure([param])
	The constant density function of the surface measure.

	
__init__(part, axis)

	Initialize a new instance.

	Parameters:	part : 1-dim. RectPartition

Partition of the parameter interval, corresponding to the
line elements

axis : array-like, shape (2,)

Principal axis of the detector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.axis

	
Flat1dDetector.axis

	Normalized principal axis of the detector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.grid

	
Flat1dDetector.grid

	Sampling grid of the parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.ndim

	
Flat1dDetector.ndim

	Number of dimensions of this detector (0, 1 or 2).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.normal

	
Flat1dDetector.normal

	Unit vector perpendicular to the detector.

Its orientation is chosen such that the system axis, normal
is right-handed.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.params

	
Flat1dDetector.params

	Surface parameter set of this detector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.partition

	
Flat1dDetector.partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.shape

	
Flat1dDetector.shape

	Number of subsets (pixels) of the detector per axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.size

	
Flat1dDetector.size

	Total number of pixels.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.surface

	
Flat1dDetector.surface(param)

	The parametrization of the (1d) detector reference surface.

The reference line segment is chosen to be aligned with the
second coordinate axis, such that the parameter value 0 results
in the reference point (0, 0).

	Parameters:	param : element of params

The parameter value where to evaluate the function

	Returns:	point : numpy.ndarray, shape (2,)

The point on the detector surface corresponding to the
given parameters

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.surface_deriv

	
Flat1dDetector.surface_deriv(param=None)

	The derivative of the surface parametrization.

	Parameters:	param : element of params, optional

The parameter value where to evaluate the function

	Returns:	derivative : numpy.ndarray, shape (2,)

The constant derivative

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat1dDetector

Flat1dDetector.surface_measure

	
Flat1dDetector.surface_measure(param=None)

	The constant density function of the surface measure.

	Parameters:	param : element of params, optional

The parameter value where to evaluate the function

	Returns:	measure : float

The constant density 1.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

Flat2dDetector

	
class odl.tomo.geometry.detector.Flat2dDetector(part, axes)

	Bases: odl.tomo.geometry.detector.FlatDetector

A 2d flat panel detector aligned with axes.

Attributes

	axes
	Normalized principal axes of this detector as a 2-tuple.

	grid
	Sampling grid of the parameters.

	ndim
	Number of dimensions of this detector (0, 1 or 2).

	normal
	Unit vector perpendicular to this detector.

	params
	Surface parameter set of this detector.

	partition
	Partition of the detector parameter set into subsets.

	shape
	Number of subsets (pixels) of the detector per axis.

	size
	Total number of pixels.

Methods

	__eq__
	Return self==value.

	surface(param)
	Parametrization of the 2d detector reference surface.

	surface_deriv([param])
	The derivative of the surface parametrization.

	surface_measure([param])
	The constant density function of the surface measure.

	
__init__(part, axes)

	Initialize a new instance.

	Parameters:	part : 1-dim. RectPartition

Partition of the parameter interval, corresponding to the
pixels

axes : 2-tuple of array-like (shape (3,))

Principal axes of the detector, e.g.
[(0, 1, 0), (0, 0, 1)]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.axes

	
Flat2dDetector.axes

	Normalized principal axes of this detector as a 2-tuple.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.grid

	
Flat2dDetector.grid

	Sampling grid of the parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.ndim

	
Flat2dDetector.ndim

	Number of dimensions of this detector (0, 1 or 2).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.normal

	
Flat2dDetector.normal

	Unit vector perpendicular to this detector.

The orientation is chosen such that the triple
axes[0], axes[1], normal form a right-hand system.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.params

	
Flat2dDetector.params

	Surface parameter set of this detector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.partition

	
Flat2dDetector.partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.shape

	
Flat2dDetector.shape

	Number of subsets (pixels) of the detector per axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.size

	
Flat2dDetector.size

	Total number of pixels.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.surface

	
Flat2dDetector.surface(param)

	Parametrization of the 2d detector reference surface.

The reference plane segment is chosen to be aligned with the
second and third coordinate axes, in this order, such that
the parameter value (0, 0) results in the reference (0, 0, 0).

	Parameters:	param : element of params

The parameter value where to evaluate the function

	Returns:	point : numpy.ndarray, shape (3,)

The point on the detector surface corresponding to the
given parameters

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.surface_deriv

	
Flat2dDetector.surface_deriv(param=None)

	The derivative of the surface parametrization.

	Parameters:	param : element of params, optional

The parameter value where to evaluate the function

	Returns:	derivatives : 2-tuple of numpy.ndarray (shape (3,))

The constant partial derivatives given by the detector axes

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	Flat2dDetector

Flat2dDetector.surface_measure

	
Flat2dDetector.surface_measure(param=None)

	The constant density function of the surface measure.

	Parameters:	param : element of params, optional

The parameter value where to evaluate the function

	Returns:	measure : float

The constant density 1.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

FlatDetector

	
class odl.tomo.geometry.detector.FlatDetector(part)

	Bases: odl.tomo.geometry.detector.Detector

Abstract class for flat detectors in 2 and 3 dimensions.

Attributes

	grid
	Sampling grid of the parameters.

	ndim
	Number of dimensions of this detector (0, 1 or 2).

	params
	Surface parameter set of this detector.

	partition
	Partition of the detector parameter set into subsets.

	shape
	Number of subsets (pixels) of the detector per axis.

	size
	Total number of pixels.

Methods

	__eq__
	Return self==value.

	surface(param)
	Parametrization of the detector reference surface.

	surface_deriv(param)
	Partial derivative(s) of the surface parametrization.

	surface_measure([param])
	The constant density function of the surface measure.

	
__init__(part)

	Initialize a new instance.

	Parameters:	part : RectPartition

Partition of the detector parameter set (pixelization).
It determines dimension, parameter range and discretization.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	FlatDetector

FlatDetector.grid

	
FlatDetector.grid

	Sampling grid of the parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	FlatDetector

FlatDetector.ndim

	
FlatDetector.ndim

	Number of dimensions of this detector (0, 1 or 2).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	FlatDetector

FlatDetector.params

	
FlatDetector.params

	Surface parameter set of this detector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	FlatDetector

FlatDetector.partition

	
FlatDetector.partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	FlatDetector

FlatDetector.shape

	
FlatDetector.shape

	Number of subsets (pixels) of the detector per axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	FlatDetector

FlatDetector.size

	
FlatDetector.size

	Total number of pixels.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	FlatDetector

FlatDetector.surface

	
FlatDetector.surface(param)

	Parametrization of the detector reference surface.

	Parameters:	param : element of params

Parameter value where to evaluate the function

	Returns:	point :

Spatial location of the detector point corresponding to
param

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	FlatDetector

FlatDetector.surface_deriv

	
FlatDetector.surface_deriv(param)

	Partial derivative(s) of the surface parametrization.

	Parameters:	param : element of params

The parameter value where to evaluate the function

	Returns:	deriv :

Vector (ndim=1) or sequence of vectors corresponding
to the partial derivatives at param

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	detector

 	FlatDetector

FlatDetector.surface_measure

	
FlatDetector.surface_measure(param=None)

	The constant density function of the surface measure.

	Parameters:	param : element of params, optional

The parameter value where to evaluate the function

	Returns:	measure : float

The constant density 1.0

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

fanbeam

Fanbeam geometries.

Classes

	FanFlatGeometry(apart,dpart,src_radius,...)
	Abstract 2d fan beam geometry with flat 1d detector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

FanFlatGeometry

	
class odl.tomo.geometry.fanbeam.FanFlatGeometry(apart, dpart, src_radius, det_radius, **kwargs)

	Bases: odl.tomo.geometry.geometry.DivergentBeamGeometry

Abstract 2d fan beam geometry with flat 1d detector.

The source moves on a circle with radius src_radius, and the
detector reference point is opposite to the source, i.e. at maximum
distance, on a circle with radius det_radius. One of the two
radii can be chosen as 0, which corresponds to a stationary source
or detector, respectively.

The motion parameter is the 1d rotation angle parameterizing source
and detector positions simultaneously.

In the standard configuration, the source and detector start on the
first coodinate axis with vector (1, 0) from source to detector,
and the initial detector axis is (0, 1).

Attributes

	det_grid
	Sampling grid of det_params.

	det_params
	Continuous detector parameter range, an IntervalProd.

	det_partition
	Partition of the detector parameter set into subsets.

	det_radius
	Detector circle radius of this geometry.

	detector
	Detector representation of this geometry.

	grid
	Joined sampling grid for motion and detector.

	implementation_cache
	Dictionary acting as a cache for this geometry.

	motion_grid
	Sampling grid of motion_params.

	motion_params
	Continuous motion parameter range, an IntervalProd.

	motion_partition
	Partition of the motion parameter set into subsets.

	ndim
	The number of dimensions of the geometry.

	params
	Joined parameter set for motion and detector.

	partition
	Joined parameter set partition for motion and detector.

	src_radius
	Source circle radius of this geometry.

Methods

	__eq__
	Return self==value.

	det_point_position(mpar,dpar)
	The detector point position function.

	det_refpoint(angle)
	Return the detector reference point position at angle.

	det_to_src(mpar,dpar[,normalized])
	Vector pointing from a detector location to the source.

	rotation_matrix(angle)
	Return the rotation matrix for angle.

	src_position(angle)
	Return the source position at angle.

	
__init__(apart, dpart, src_radius, det_radius, **kwargs)

	Initialize a new instance.

	Parameters:	apart : 1-dim. RectPartition

Partition of the angle interval

dpart : 1-dim. RectPartition

Partition of the detector parameter interval

src_radius : nonnegative float

Radius of the source circle

det_radius : nonnegative float

Radius of the detector circle

src_to_det_init : array-like, shape (2,), optional

Initial state of the vector pointing from source to detector
reference point. The zero vector is not allowed.
Default: (1, 0).

det_init_axis : array-like (shape (2,)), optional

Initial axis defining the detector orientation.
By default, a normalized perpendicular_vector to
src_to_det_init is used.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.det_grid

	
FanFlatGeometry.det_grid

	Sampling grid of det_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.det_params

	
FanFlatGeometry.det_params

	Continuous detector parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.det_partition

	
FanFlatGeometry.det_partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.det_radius

	
FanFlatGeometry.det_radius

	Detector circle radius of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.detector

	
FanFlatGeometry.detector

	Detector representation of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.grid

	
FanFlatGeometry.grid

	Joined sampling grid for motion and detector.

By convention, the motion grid comes before the detector grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.implementation_cache

	
FanFlatGeometry.implementation_cache

	Dictionary acting as a cache for this geometry.

Intended for reuse of computations. Implementations that use this
storage should take care of unique naming.

	Returns:	implementations : dict

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.motion_grid

	
FanFlatGeometry.motion_grid

	Sampling grid of motion_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.motion_params

	
FanFlatGeometry.motion_params

	Continuous motion parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.motion_partition

	
FanFlatGeometry.motion_partition

	Partition of the motion parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.ndim

	
FanFlatGeometry.ndim

	The number of dimensions of the geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.params

	
FanFlatGeometry.params

	Joined parameter set for motion and detector.

By convention, the motion parameters come before the detector
parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.partition

	
FanFlatGeometry.partition

	Joined parameter set partition for motion and detector.

Returns a RectPartition with the detector partition inserted
after the motion partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.src_radius

	
FanFlatGeometry.src_radius

	Source circle radius of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.det_point_position

	
FanFlatGeometry.det_point_position(mpar, dpar)

	The detector point position function.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

	Returns:	pos : numpy.ndarray, shape (ndim,)

The source position, a ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.det_refpoint

	
FanFlatGeometry.det_refpoint(angle)

	Return the detector reference point position at angle.

For an angle phi, the detector position is given by:

ref(phi) = det_rad * rot_matrix(phi) * src_to_det_init

where src_to_det_init is the initial unit vector pointing
from source to detector.

	Parameters:	angle : float

Rotation angle given in radians, must be contained in
this geometry’s motion_params

	Returns:	point : numpy.ndarray, shape (2,)

Detector reference point corresponding to the given angle

See also

rotation_matrix

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.det_to_src

	
FanFlatGeometry.det_to_src(mpar, dpar, normalized=True)

	Vector pointing from a detector location to the source.

A function of the motion and detector parameters.

The default implementation uses the det_point_position and
src_position functions. Implementations can override this, for
example if no source position is given.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

normalized : bool, optional

If True, return a normalized (unit) vector.

	Returns:	vec : numpy.ndarray, shape (ndim,)

(Unit) vector pointing from the detector to the source

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.rotation_matrix

	
FanFlatGeometry.rotation_matrix(angle)

	Return the rotation matrix for angle.

For an angle phi, the matrix is given by:

rot(phi) = [[cos(phi), -sin(phi)],
 [sin(phi), cos(phi)]]

	Parameters:	angle : float

Rotation angle given in radians, must be contained in
this geometry’s motion_params

	Returns:	rot : numpy.ndarray, shape (2, 2)

The rotation matrix mapping the standard basis vectors in
the fixed (“lab”) coordinate system to the basis vectors of
the local coordinate system of the detector reference point,
expressed in the fixed system

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	fanbeam

 	FanFlatGeometry

FanFlatGeometry.src_position

	
FanFlatGeometry.src_position(angle)

	Return the source position at angle.

For an angle phi, the source position is given by:

src(phi) = -src_rad * rot_matrix(phi) * src_to_det_init

where src_to_det_init is the initial unit vector pointing
from source to detector.

	Parameters:	angle : float

Rotation angle given in radians, must be contained in
this geometry’s motion_params

	Returns:	point : numpy.ndarray, shape (2,)

Source position corresponding to the given angle

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

geometry

Geometry base class.

Classes

	AxisOrientedGeometry(axis)
	Mixin class for 3d geometries oriented according to an axis.

	DivergentBeamGeometry(ndim,motion_part,...)
	Abstract divergent beam geometry class.

	Geometry(ndim,motion_part,detector)
	Abstract geometry class.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

AxisOrientedGeometry

	
class odl.tomo.geometry.geometry.AxisOrientedGeometry(axis)

	Bases: object

Mixin class for 3d geometries oriented according to an axis.

Attributes

	axis
	The normalized axis of rotation, a 3-element vector.

Methods

	__eq__
	Return self==value.

	rotation_matrix(angle)
	The detector rotation function.

	
__init__(axis)

	Initialize a new instance.

	Parameters:	axis : 3-element array-like

Vector defining the fixed rotation axis after normalization

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	AxisOrientedGeometry

AxisOrientedGeometry.axis

	
AxisOrientedGeometry.axis

	The normalized axis of rotation, a 3-element vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	AxisOrientedGeometry

AxisOrientedGeometry.rotation_matrix

	
AxisOrientedGeometry.rotation_matrix(angle)

	The detector rotation function.

Returns the matrix for rotating a vector in 3d by an angle angle
about the rotation axis given by the property axis according to
the right hand rule.

The matrix is computed according to
Rodrigues’ rotation formula [https://en.wikipedia.org/wiki/Rodrigues’_rotation_formula].

	Parameters:	angle : float

The motion parameter given in radian. It must be
contained in this geometry’s motion_params.

	Returns:	rot_mat : numpy.ndarray, shape (3, 3)

The rotation matrix mapping the standard basis vectors in
the fixed (“lab”) coordinate system to the basis vectors of
the local coordinate system of the detector reference point,
expressed in the fixed system.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

DivergentBeamGeometry

	
class odl.tomo.geometry.geometry.DivergentBeamGeometry(ndim, motion_part, detector)

	Bases: odl.tomo.geometry.geometry.Geometry

Abstract divergent beam geometry class.

A divergent beam geometry is characterized by the presence of a
point source.

Special cases include fan beam in 2d and cone beam in 3d.

Attributes

	det_grid
	Sampling grid of det_params.

	det_params
	Continuous detector parameter range, an IntervalProd.

	det_partition
	Partition of the detector parameter set into subsets.

	detector
	Detector representation of this geometry.

	grid
	Joined sampling grid for motion and detector.

	implementation_cache
	Dictionary acting as a cache for this geometry.

	motion_grid
	Sampling grid of motion_params.

	motion_params
	Continuous motion parameter range, an IntervalProd.

	motion_partition
	Partition of the motion parameter set into subsets.

	ndim
	The number of dimensions of the geometry.

	params
	Joined parameter set for motion and detector.

	partition
	Joined parameter set partition for motion and detector.

Methods

	__eq__
	Return self==value.

	det_point_position(mpar,dpar)
	The detector point position function.

	det_refpoint(mpar)
	The detector reference point function.

	det_to_src(mpar,dpar[,normalized])
	Vector pointing from a detector location to the source.

	rotation_matrix(mpar)
	The detector rotation function for calculating the detector reference position.

	src_position(mpar)
	The source position function.

	
__init__(ndim, motion_part, detector)

	Initialize a new instance.

	Parameters:	ndim : positive int

Number of dimensions of this geometry, i.e. dimensionality
of the physical space in which this geometry is embedded

motion_part : RectPartition

Partition for the set of “motion” parameters

detector : Detector

The detector of this geometry

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.det_grid

	
DivergentBeamGeometry.det_grid

	Sampling grid of det_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.det_params

	
DivergentBeamGeometry.det_params

	Continuous detector parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.det_partition

	
DivergentBeamGeometry.det_partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.detector

	
DivergentBeamGeometry.detector

	Detector representation of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.grid

	
DivergentBeamGeometry.grid

	Joined sampling grid for motion and detector.

By convention, the motion grid comes before the detector grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.implementation_cache

	
DivergentBeamGeometry.implementation_cache

	Dictionary acting as a cache for this geometry.

Intended for reuse of computations. Implementations that use this
storage should take care of unique naming.

	Returns:	implementations : dict

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.motion_grid

	
DivergentBeamGeometry.motion_grid

	Sampling grid of motion_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.motion_params

	
DivergentBeamGeometry.motion_params

	Continuous motion parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.motion_partition

	
DivergentBeamGeometry.motion_partition

	Partition of the motion parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.ndim

	
DivergentBeamGeometry.ndim

	The number of dimensions of the geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.params

	
DivergentBeamGeometry.params

	Joined parameter set for motion and detector.

By convention, the motion parameters come before the detector
parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.partition

	
DivergentBeamGeometry.partition

	Joined parameter set partition for motion and detector.

Returns a RectPartition with the detector partition inserted
after the motion partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.det_point_position

	
DivergentBeamGeometry.det_point_position(mpar, dpar)

	The detector point position function.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

	Returns:	pos : numpy.ndarray, shape (ndim,)

The source position, a ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.det_refpoint

	
DivergentBeamGeometry.det_refpoint(mpar)

	The detector reference point function.

	Parameters:	mpar : element of motion parameters

Motion parameter for which to calculate the detector
reference point

	Returns:	point : numpy.ndarray, shape (ndim,)

The reference point, an ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.det_to_src

	
DivergentBeamGeometry.det_to_src(mpar, dpar, normalized=True)

	Vector pointing from a detector location to the source.

A function of the motion and detector parameters.

The default implementation uses the det_point_position and
src_position functions. Implementations can override this, for
example if no source position is given.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

normalized : bool, optional

If True, return a normalized (unit) vector.

	Returns:	vec : numpy.ndarray, shape (ndim,)

(Unit) vector pointing from the detector to the source

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.rotation_matrix

	
DivergentBeamGeometry.rotation_matrix(mpar)

	The detector rotation function for calculating the detector
reference position.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter for which to calculate the detector
reference rotation

	Returns:	rot : numpy.ndarray, shape (ndim, ndim)

The rotation matrix mapping the standard basis vectors in
the fixed (“lab”) coordinate system to the basis vectors of
the local coordinate system of the detector reference point,
expressed in the fixed system.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	DivergentBeamGeometry

DivergentBeamGeometry.src_position

	
DivergentBeamGeometry.src_position(mpar)

	The source position function.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter for which to calculate the source position

	Returns:	pos : numpy.ndarray, shape (ndim,)

The source position, a ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

Geometry

	
class odl.tomo.geometry.geometry.Geometry(ndim, motion_part, detector)

	Bases: object

Abstract geometry class.

A geometry is described by

	a detector,

	a set of detector motion parameters,

	a function mapping motion parameters to the location of a
reference point (e.g. the center of the detector surface),

	a rotation applied to the detector surface, depending on the motion
parameters,

	a mapping from the motion and surface parameters to the detector pixel
direction to the source,

	optionally a mapping from the motion parameters to the source position

Attributes

	det_grid
	Sampling grid of det_params.

	det_params
	Continuous detector parameter range, an IntervalProd.

	det_partition
	Partition of the detector parameter set into subsets.

	detector
	Detector representation of this geometry.

	grid
	Joined sampling grid for motion and detector.

	implementation_cache
	Dictionary acting as a cache for this geometry.

	motion_grid
	Sampling grid of motion_params.

	motion_params
	Continuous motion parameter range, an IntervalProd.

	motion_partition
	Partition of the motion parameter set into subsets.

	ndim
	The number of dimensions of the geometry.

	params
	Joined parameter set for motion and detector.

	partition
	Joined parameter set partition for motion and detector.

Methods

	__eq__
	Return self==value.

	det_point_position(mpar,dpar)
	The detector point position function.

	det_refpoint(mpar)
	The detector reference point function.

	det_to_src(mpar,dpar[,normalized])
	Vector pointing from a detector location to the source.

	rotation_matrix(mpar)
	The detector rotation function for calculating the detector reference position.

	
__init__(ndim, motion_part, detector)

	Initialize a new instance.

	Parameters:	ndim : positive int

Number of dimensions of this geometry, i.e. dimensionality
of the physical space in which this geometry is embedded

motion_part : RectPartition

Partition for the set of “motion” parameters

detector : Detector

The detector of this geometry

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.det_grid

	
Geometry.det_grid

	Sampling grid of det_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.det_params

	
Geometry.det_params

	Continuous detector parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.det_partition

	
Geometry.det_partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.detector

	
Geometry.detector

	Detector representation of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.grid

	
Geometry.grid

	Joined sampling grid for motion and detector.

By convention, the motion grid comes before the detector grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.implementation_cache

	
Geometry.implementation_cache

	Dictionary acting as a cache for this geometry.

Intended for reuse of computations. Implementations that use this
storage should take care of unique naming.

	Returns:	implementations : dict

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.motion_grid

	
Geometry.motion_grid

	Sampling grid of motion_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.motion_params

	
Geometry.motion_params

	Continuous motion parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.motion_partition

	
Geometry.motion_partition

	Partition of the motion parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.ndim

	
Geometry.ndim

	The number of dimensions of the geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.params

	
Geometry.params

	Joined parameter set for motion and detector.

By convention, the motion parameters come before the detector
parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.partition

	
Geometry.partition

	Joined parameter set partition for motion and detector.

Returns a RectPartition with the detector partition inserted
after the motion partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.det_point_position

	
Geometry.det_point_position(mpar, dpar)

	The detector point position function.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

	Returns:	pos : numpy.ndarray, shape (ndim,)

The source position, a ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.det_refpoint

	
Geometry.det_refpoint(mpar)

	The detector reference point function.

	Parameters:	mpar : element of motion parameters

Motion parameter for which to calculate the detector
reference point

	Returns:	point : numpy.ndarray, shape (ndim,)

The reference point, an ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.det_to_src

	
Geometry.det_to_src(mpar, dpar, normalized=True)

	Vector pointing from a detector location to the source.

A function of the motion and detector parameters.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

normalized : bool, optional

If True, return a normalized (unit) vector. Default: True

	Returns:	vec : numpy.ndarray, shape (ndim,)

(Unit) vector pointing from the detector to the source

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	geometry

 	Geometry

Geometry.rotation_matrix

	
Geometry.rotation_matrix(mpar)

	The detector rotation function for calculating the detector
reference position.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter for which to calculate the detector
reference rotation

	Returns:	rot : numpy.ndarray, shape (ndim, ndim)

The rotation matrix mapping the standard basis vectors in
the fixed (“lab”) coordinate system to the basis vectors of
the local coordinate system of the detector reference point,
expressed in the fixed system.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

parallel

Parallel beam geometries.

Classes

	Parallel2dGeometry(apart,dpart,**kwargs)
	Parallel beam geometry in 2d.

	Parallel3dAxisGeometry(apart,dpart[,axis])
	Parallel beam geometry in 3d with single rotation axis.

	Parallel3dGeometry(apart,dpart,**kwargs)
	Parallel beam geometry in 3d.

	ParallelGeometry(ndim,apart,detector,...)
	Abstract parallel beam geometry in 2 or 3 dimensions.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

Parallel2dGeometry

	
class odl.tomo.geometry.parallel.Parallel2dGeometry(apart, dpart, **kwargs)

	Bases: odl.tomo.geometry.parallel.ParallelGeometry

Parallel beam geometry in 2d.

The motion parameter is the counter-clockwise rotation angle around
the origin, and the detector is a line detector perpendicular to the
ray direction.

In the standard configuration, the detector reference point starts
at (1, 0), and the initial detector axis is (0, 1).

Attributes

	det_grid
	Sampling grid of det_params.

	det_params
	Continuous detector parameter range, an IntervalProd.

	det_partition
	Partition of the detector parameter set into subsets.

	detector
	Detector representation of this geometry.

	grid
	Joined sampling grid for motion and detector.

	implementation_cache
	Dictionary acting as a cache for this geometry.

	motion_grid
	Sampling grid of motion_params.

	motion_params
	Continuous motion parameter range, an IntervalProd.

	motion_partition
	Partition of the motion parameter set into subsets.

	ndim
	The number of dimensions of the geometry.

	params
	Joined parameter set for motion and detector.

	partition
	Joined parameter set partition for motion and detector.

Methods

	__eq__
	Return self==value.

	det_point_position(mpar,dpar)
	The detector point position function.

	det_refpoint(angles)
	Return the position of the detector ref.

	det_to_src(angles,dpar[,normalized])
	Direction from a detector location to the source.

	rotation_matrix(angle)
	Return the rotation matrix for angle.

	
__init__(apart, dpart, **kwargs)

	Initialize a new instance.

	Parameters:	apart : 1-dim. RectPartition

Partition of the angle interval

dpart : 1-dim. RectPartition

Partition of the detector parameter interval

det_init_pos : array-like, shape (2,), optional

Initial position of the detector reference point. The zero
vector is only allowed if det_init_axis is explicitly
given.
Default: (1, 0).

det_init_axis : array-like (shape (2,)), optional

Initial axis defining the detector orientation.
By default, a normalized perpendicular_vector to
det_init_pos is used, which is only valid if
det_init_axis is not zero.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.det_grid

	
Parallel2dGeometry.det_grid

	Sampling grid of det_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.det_params

	
Parallel2dGeometry.det_params

	Continuous detector parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.det_partition

	
Parallel2dGeometry.det_partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.detector

	
Parallel2dGeometry.detector

	Detector representation of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.grid

	
Parallel2dGeometry.grid

	Joined sampling grid for motion and detector.

By convention, the motion grid comes before the detector grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.implementation_cache

	
Parallel2dGeometry.implementation_cache

	Dictionary acting as a cache for this geometry.

Intended for reuse of computations. Implementations that use this
storage should take care of unique naming.

	Returns:	implementations : dict

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.motion_grid

	
Parallel2dGeometry.motion_grid

	Sampling grid of motion_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.motion_params

	
Parallel2dGeometry.motion_params

	Continuous motion parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.motion_partition

	
Parallel2dGeometry.motion_partition

	Partition of the motion parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.ndim

	
Parallel2dGeometry.ndim

	The number of dimensions of the geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.params

	
Parallel2dGeometry.params

	Joined parameter set for motion and detector.

By convention, the motion parameters come before the detector
parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.partition

	
Parallel2dGeometry.partition

	Joined parameter set partition for motion and detector.

Returns a RectPartition with the detector partition inserted
after the motion partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.det_point_position

	
Parallel2dGeometry.det_point_position(mpar, dpar)

	The detector point position function.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

	Returns:	pos : numpy.ndarray, shape (ndim,)

The source position, a ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.det_refpoint

	
Parallel2dGeometry.det_refpoint(angles)

	Return the position of the detector ref. point at angles.

The reference point is given by a rotation of the initial
position by angles.

	Parameters:	angles : float

Parameters describing the detector rotation, must be
contained in motion_params.

	Returns:	point : numpy.ndarray, shape (ndim,)

The reference point for the given parameters

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.det_to_src

	
Parallel2dGeometry.det_to_src(angles, dpar, normalized=True)

	Direction from a detector location to the source.

In parallel geometry, this function is independent of the
detector parameter.

Since the (virtual) source is infinitely far away, only the
normalized version is valid.

	Parameters:	angles : array-like

Euler angles given in radians, must be contained
in this geometry’s motion_params

dpar : float

Detector parameters, must be contained in this
geometry’s det_params

normalized : bool, optional

If True, return the normalized version of the vector.
For parallel geometry, this is the only sensible option.

	Returns:	vec : numpy.ndarray, shape (ndim,)

Unit vector pointing from the detector to the source

	Raises:	NotImplementedError

if normalized=False is given, since this case is not
well defined.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel2dGeometry

Parallel2dGeometry.rotation_matrix

	
Parallel2dGeometry.rotation_matrix(angle)

	Return the rotation matrix for angle.

For an angle phi, the matrix is given by:

rot(phi) = [[cos(phi), -sin(phi)],
 [sin(phi), cos(phi)]]

	Parameters:	angle : float

Rotation angle given in radians, must be contained in
this geometry’s motion_params

	Returns:	rot : numpy.ndarray, shape (2, 2)

The rotation matrix mapping the standard basis vectors in
the fixed (“lab”) coordinate system to the basis vectors of
the local coordinate system of the detector reference point,
expressed in the fixed system

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

Parallel3dAxisGeometry

	
class odl.tomo.geometry.parallel.Parallel3dAxisGeometry(apart, dpart, axis=[0, 0, 1], **kwargs)

	Bases: odl.tomo.geometry.parallel.ParallelGeometry, odl.tomo.geometry.geometry.AxisOrientedGeometry

Parallel beam geometry in 3d with single rotation axis.

The motion parameter is the rotation angle around the specified
axis, and the detector is a flat 2d detector perpendicular to the
ray direction.

In the standard configuration, the rotation axis is (0, 0, 1),
the detector reference point starts at (1, 0, 0), and the
initial detector axes are [(0, 1, 0), (0, 0, 1)].

Attributes

	axis
	The normalized axis of rotation, a 3-element vector.

	det_grid
	Sampling grid of det_params.

	det_params
	Continuous detector parameter range, an IntervalProd.

	det_partition
	Partition of the detector parameter set into subsets.

	detector
	Detector representation of this geometry.

	grid
	Joined sampling grid for motion and detector.

	implementation_cache
	Dictionary acting as a cache for this geometry.

	motion_grid
	Sampling grid of motion_params.

	motion_params
	Continuous motion parameter range, an IntervalProd.

	motion_partition
	Partition of the motion parameter set into subsets.

	ndim
	The number of dimensions of the geometry.

	params
	Joined parameter set for motion and detector.

	partition
	Joined parameter set partition for motion and detector.

Methods

	__eq__
	Return self==value.

	det_point_position(mpar,dpar)
	The detector point position function.

	det_refpoint(angles)
	Return the position of the detector ref.

	det_to_src(angles,dpar[,normalized])
	Direction from a detector location to the source.

	rotation_matrix(angle)
	The detector rotation function.

	
__init__(apart, dpart, axis=[0, 0, 1], **kwargs)

	Initialize a new instance.

	Parameters:	apart : 1-dim. RectPartition

Partition of the angle interval

dpart : 2-dim. RectPartition

Partition of the detector parameter interval

axis : array-like, shape (3,), optional

Fixed rotation axis defined by a 3-element vector

det_init_pos : array-like, shape (3,), optional

Initial position of the detector reference point. The zero
vector is only allowed if det_init_axes is explicitly
given.
By default, a perpendicular_vector to axis is used.

det_init_axes : 2-tuple of array-like (shape (3,)), optional

Initial axes defining the detector orientation.
By default, the normalized cross product of axis and
det_init_pos is used as first axis and axis as second.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.axis

	
Parallel3dAxisGeometry.axis

	The normalized axis of rotation, a 3-element vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.det_grid

	
Parallel3dAxisGeometry.det_grid

	Sampling grid of det_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.det_params

	
Parallel3dAxisGeometry.det_params

	Continuous detector parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.det_partition

	
Parallel3dAxisGeometry.det_partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.detector

	
Parallel3dAxisGeometry.detector

	Detector representation of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.grid

	
Parallel3dAxisGeometry.grid

	Joined sampling grid for motion and detector.

By convention, the motion grid comes before the detector grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.implementation_cache

	
Parallel3dAxisGeometry.implementation_cache

	Dictionary acting as a cache for this geometry.

Intended for reuse of computations. Implementations that use this
storage should take care of unique naming.

	Returns:	implementations : dict

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.motion_grid

	
Parallel3dAxisGeometry.motion_grid

	Sampling grid of motion_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.motion_params

	
Parallel3dAxisGeometry.motion_params

	Continuous motion parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.motion_partition

	
Parallel3dAxisGeometry.motion_partition

	Partition of the motion parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.ndim

	
Parallel3dAxisGeometry.ndim

	The number of dimensions of the geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.params

	
Parallel3dAxisGeometry.params

	Joined parameter set for motion and detector.

By convention, the motion parameters come before the detector
parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.partition

	
Parallel3dAxisGeometry.partition

	Joined parameter set partition for motion and detector.

Returns a RectPartition with the detector partition inserted
after the motion partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.det_point_position

	
Parallel3dAxisGeometry.det_point_position(mpar, dpar)

	The detector point position function.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

	Returns:	pos : numpy.ndarray, shape (ndim,)

The source position, a ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.det_refpoint

	
Parallel3dAxisGeometry.det_refpoint(angles)

	Return the position of the detector ref. point at angles.

The reference point is given by a rotation of the initial
position by angles.

	Parameters:	angles : float

Parameters describing the detector rotation, must be
contained in motion_params.

	Returns:	point : numpy.ndarray, shape (ndim,)

The reference point for the given parameters

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.det_to_src

	
Parallel3dAxisGeometry.det_to_src(angles, dpar, normalized=True)

	Direction from a detector location to the source.

In parallel geometry, this function is independent of the
detector parameter.

Since the (virtual) source is infinitely far away, only the
normalized version is valid.

	Parameters:	angles : array-like

Euler angles given in radians, must be contained
in this geometry’s motion_params

dpar : float

Detector parameters, must be contained in this
geometry’s det_params

normalized : bool, optional

If True, return the normalized version of the vector.
For parallel geometry, this is the only sensible option.

	Returns:	vec : numpy.ndarray, shape (ndim,)

Unit vector pointing from the detector to the source

	Raises:	NotImplementedError

if normalized=False is given, since this case is not
well defined.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dAxisGeometry

Parallel3dAxisGeometry.rotation_matrix

	
Parallel3dAxisGeometry.rotation_matrix(angle)

	The detector rotation function.

Returns the matrix for rotating a vector in 3d by an angle angle
about the rotation axis given by the property axis according to
the right hand rule.

The matrix is computed according to
Rodrigues’ rotation formula [https://en.wikipedia.org/wiki/Rodrigues’_rotation_formula].

	Parameters:	angle : float

The motion parameter given in radian. It must be
contained in this geometry’s motion_params.

	Returns:	rot_mat : numpy.ndarray, shape (3, 3)

The rotation matrix mapping the standard basis vectors in
the fixed (“lab”) coordinate system to the basis vectors of
the local coordinate system of the detector reference point,
expressed in the fixed system.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

Parallel3dGeometry

	
class odl.tomo.geometry.parallel.Parallel3dGeometry(apart, dpart, **kwargs)

	Bases: odl.tomo.geometry.parallel.ParallelGeometry

Parallel beam geometry in 3d.

The motion parameters are two or three Euler angles, and the detector
is flat and two-dimensional.

In the standard configuration, the detector reference point starts
at (1, 0, 0), and the initial detector axes are
[(0, 1, 0), (0, 0, 1)].

Attributes

	det_grid
	Sampling grid of det_params.

	det_params
	Continuous detector parameter range, an IntervalProd.

	det_partition
	Partition of the detector parameter set into subsets.

	detector
	Detector representation of this geometry.

	grid
	Joined sampling grid for motion and detector.

	implementation_cache
	Dictionary acting as a cache for this geometry.

	motion_grid
	Sampling grid of motion_params.

	motion_params
	Continuous motion parameter range, an IntervalProd.

	motion_partition
	Partition of the motion parameter set into subsets.

	ndim
	The number of dimensions of the geometry.

	params
	Joined parameter set for motion and detector.

	partition
	Joined parameter set partition for motion and detector.

Methods

	__eq__
	Return self==value.

	det_point_position(mpar,dpar)
	The detector point position function.

	det_refpoint(angles)
	Return the position of the detector ref.

	det_to_src(angles,dpar[,normalized])
	Direction from a detector location to the source.

	rotation_matrix(angles)
	Matrix defining the detector rotation at angles.

	
__init__(apart, dpart, **kwargs)

	Initialize a new instance.

	Parameters:	apart : 2- or 3-dim. RectPartition

Partition of the angle parameter set

dpart : 2-dim. RectPartition

Partition of the detector parameter interval

det_init_pos : array-like, shape (3,), optional

Initial position of the detector reference point. The zero
vector is only allowed if det_init_axes is explicitly
given.
Default: (1, 0, 0)

det_init_axes : 2-tuple of array-like (shape (3,)), optional

Initial axes defining the detector orientation.
By default, a normalized perpendicular_vector to
det_init_pos is taken as first axis, and the normalized
cross product of these two as second.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.det_grid

	
Parallel3dGeometry.det_grid

	Sampling grid of det_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.det_params

	
Parallel3dGeometry.det_params

	Continuous detector parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.det_partition

	
Parallel3dGeometry.det_partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.detector

	
Parallel3dGeometry.detector

	Detector representation of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.grid

	
Parallel3dGeometry.grid

	Joined sampling grid for motion and detector.

By convention, the motion grid comes before the detector grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.implementation_cache

	
Parallel3dGeometry.implementation_cache

	Dictionary acting as a cache for this geometry.

Intended for reuse of computations. Implementations that use this
storage should take care of unique naming.

	Returns:	implementations : dict

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.motion_grid

	
Parallel3dGeometry.motion_grid

	Sampling grid of motion_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.motion_params

	
Parallel3dGeometry.motion_params

	Continuous motion parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.motion_partition

	
Parallel3dGeometry.motion_partition

	Partition of the motion parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.ndim

	
Parallel3dGeometry.ndim

	The number of dimensions of the geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.params

	
Parallel3dGeometry.params

	Joined parameter set for motion and detector.

By convention, the motion parameters come before the detector
parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.partition

	
Parallel3dGeometry.partition

	Joined parameter set partition for motion and detector.

Returns a RectPartition with the detector partition inserted
after the motion partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.det_point_position

	
Parallel3dGeometry.det_point_position(mpar, dpar)

	The detector point position function.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

	Returns:	pos : numpy.ndarray, shape (ndim,)

The source position, a ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.det_refpoint

	
Parallel3dGeometry.det_refpoint(angles)

	Return the position of the detector ref. point at angles.

The reference point is given by a rotation of the initial
position by angles.

	Parameters:	angles : float

Parameters describing the detector rotation, must be
contained in motion_params.

	Returns:	point : numpy.ndarray, shape (ndim,)

The reference point for the given parameters

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.det_to_src

	
Parallel3dGeometry.det_to_src(angles, dpar, normalized=True)

	Direction from a detector location to the source.

In parallel geometry, this function is independent of the
detector parameter.

Since the (virtual) source is infinitely far away, only the
normalized version is valid.

	Parameters:	angles : array-like

Euler angles given in radians, must be contained
in this geometry’s motion_params

dpar : float

Detector parameters, must be contained in this
geometry’s det_params

normalized : bool, optional

If True, return the normalized version of the vector.
For parallel geometry, this is the only sensible option.

	Returns:	vec : numpy.ndarray, shape (ndim,)

Unit vector pointing from the detector to the source

	Raises:	NotImplementedError

if normalized=False is given, since this case is not
well defined.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	Parallel3dGeometry

Parallel3dGeometry.rotation_matrix

	
Parallel3dGeometry.rotation_matrix(angles)

	Matrix defining the detector rotation at angles.

	Parameters:	angles : array-like

Angles in radians defining the rotation, must be contained
in this geometry’s motion_params

	Returns:	rot : numpy.ndarray, shape (3, 3)

The rotation matrix mapping the standard basis vectors in
the fixed (“lab”) coordinate system to the basis vectors of
the local coordinate system of the detector reference point,
expressed in the fixed system.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

ParallelGeometry

	
class odl.tomo.geometry.parallel.ParallelGeometry(ndim, apart, detector, det_init_pos)

	Bases: odl.tomo.geometry.geometry.Geometry

Abstract parallel beam geometry in 2 or 3 dimensions.

Parallel geometries are characterized by a virtual source at
infinity, such that a unit vector from a detector point towards
the source (det_to_src) is independent of the location on the
detector.

Attributes

	det_grid
	Sampling grid of det_params.

	det_params
	Continuous detector parameter range, an IntervalProd.

	det_partition
	Partition of the detector parameter set into subsets.

	detector
	Detector representation of this geometry.

	grid
	Joined sampling grid for motion and detector.

	implementation_cache
	Dictionary acting as a cache for this geometry.

	motion_grid
	Sampling grid of motion_params.

	motion_params
	Continuous motion parameter range, an IntervalProd.

	motion_partition
	Partition of the motion parameter set into subsets.

	ndim
	The number of dimensions of the geometry.

	params
	Joined parameter set for motion and detector.

	partition
	Joined parameter set partition for motion and detector.

Methods

	__eq__
	Return self==value.

	det_point_position(mpar,dpar)
	The detector point position function.

	det_refpoint(angles)
	Return the position of the detector ref.

	det_to_src(angles,dpar[,normalized])
	Direction from a detector location to the source.

	rotation_matrix(mpar)
	The detector rotation function for calculating the detector reference position.

	
__init__(ndim, apart, detector, det_init_pos)

	Initialize a new instance.

	Parameters:	ndim : {2, 3}

Number of dimensions of this geometry, i.e. dimensionality
of the physical space in which this geometry is embedded

apart : RectPartition

Partition of the angle set

detector : Detector

The detector to use in this geometry

det_init_pos : array-like

Initial position of the detector reference point. The zero
vector is not allowed.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.det_grid

	
ParallelGeometry.det_grid

	Sampling grid of det_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.det_params

	
ParallelGeometry.det_params

	Continuous detector parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.det_partition

	
ParallelGeometry.det_partition

	Partition of the detector parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.detector

	
ParallelGeometry.detector

	Detector representation of this geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.grid

	
ParallelGeometry.grid

	Joined sampling grid for motion and detector.

By convention, the motion grid comes before the detector grid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.implementation_cache

	
ParallelGeometry.implementation_cache

	Dictionary acting as a cache for this geometry.

Intended for reuse of computations. Implementations that use this
storage should take care of unique naming.

	Returns:	implementations : dict

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.motion_grid

	
ParallelGeometry.motion_grid

	Sampling grid of motion_params.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.motion_params

	
ParallelGeometry.motion_params

	Continuous motion parameter range, an IntervalProd.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.motion_partition

	
ParallelGeometry.motion_partition

	Partition of the motion parameter set into subsets.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.ndim

	
ParallelGeometry.ndim

	The number of dimensions of the geometry.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.params

	
ParallelGeometry.params

	Joined parameter set for motion and detector.

By convention, the motion parameters come before the detector
parameters.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.partition

	
ParallelGeometry.partition

	Joined parameter set partition for motion and detector.

Returns a RectPartition with the detector partition inserted
after the motion partition.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.det_point_position

	
ParallelGeometry.det_point_position(mpar, dpar)

	The detector point position function.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter at which to evaluate

dpar : element of detector parameters det_params

Detector parameter at which to evaluate

	Returns:	pos : numpy.ndarray, shape (ndim,)

The source position, a ndim-dimensional vector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.det_refpoint

	
ParallelGeometry.det_refpoint(angles)

	Return the position of the detector ref. point at angles.

The reference point is given by a rotation of the initial
position by angles.

	Parameters:	angles : float

Parameters describing the detector rotation, must be
contained in motion_params.

	Returns:	point : numpy.ndarray, shape (ndim,)

The reference point for the given parameters

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.det_to_src

	
ParallelGeometry.det_to_src(angles, dpar, normalized=True)

	Direction from a detector location to the source.

In parallel geometry, this function is independent of the
detector parameter.

Since the (virtual) source is infinitely far away, only the
normalized version is valid.

	Parameters:	angles : array-like

Euler angles given in radians, must be contained
in this geometry’s motion_params

dpar : float

Detector parameters, must be contained in this
geometry’s det_params

normalized : bool, optional

If True, return the normalized version of the vector.
For parallel geometry, this is the only sensible option.

	Returns:	vec : numpy.ndarray, shape (ndim,)

Unit vector pointing from the detector to the source

	Raises:	NotImplementedError

if normalized=False is given, since this case is not
well defined.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	geometry

 	parallel

 	ParallelGeometry

ParallelGeometry.rotation_matrix

	
ParallelGeometry.rotation_matrix(mpar)

	The detector rotation function for calculating the detector
reference position.

	Parameters:	mpar : element of motion parameters motion_params

Motion parameter for which to calculate the detector
reference rotation

	Returns:	rot : numpy.ndarray, shape (ndim, ndim)

The rotation matrix mapping the standard basis vectors in
the fixed (“lab”) coordinate system to the basis vectors of
the local coordinate system of the detector reference point,
expressed in the fixed system.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

operators

Modules

	ray_trafo
	RayBackProjection

	RayTransform

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

ray_trafo

Ray transforms.

Classes

	RayBackProjection(discr_range,geometry[,impl])
	The adjoint of the discrete Ray transform between L^p spaces.

	RayTransform(discr_domain,geometry[,impl])
	The discrete Ray transform between L^p spaces.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

RayBackProjection

	
class odl.tomo.operators.ray_trafo.RayBackProjection(discr_range, geometry, impl='astra_cpu', **kwargs)

	Bases: odl.operator.operator.Operator

The adjoint of the discrete Ray transform between L^p spaces.

Attributes

	adjoint
	Return the adjoint operator.

	domain
	Set of objects on which this operator can be evaluated.

	geometry
	Geometry of this operator.

	impl
	Implementation back-end for evaluation of this operator.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Apply the operator to x and store the result in out.

	derivative(point)
	Return the operator derivative at point.

	
__init__(discr_range, geometry, impl='astra_cpu', **kwargs)

	Initialize a new instance.

	Parameters:	discr_range : DiscreteLp

Reconstruction space, the range of the back-projector

geometry : Geometry

The geometry of the transform, contains information about
the operator domain

impl : {‘astra_cpu’, ‘astra_cuda’}, optional

Implementation back-end for the transform. Supported back-ends:
‘astra_cpu’: ASTRA toolbox using CPU, only 2D
‘astra_cuda’: ASTRA toolbox, using CUDA, 2D or 3D

interp : {‘nearest’, ‘linear’}

Interpolation type for the discretization of the operator range.
Default: ‘nearest’

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection.adjoint

	
RayBackProjection.adjoint

	Return the adjoint operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection.domain

	
RayBackProjection.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection.geometry

	
RayBackProjection.geometry

	Geometry of this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection.impl

	
RayBackProjection.impl

	Implementation back-end for evaluation of this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection.inverse

	
RayBackProjection.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection.is_functional

	
RayBackProjection.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection.is_linear

	
RayBackProjection.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection.range

	
RayBackProjection.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection.__call__

	
RayBackProjection.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection._call

	
RayBackProjection._call(x, out=None)

	Apply the operator to x and store the result in out.

	Parameters:	x : DiscreteLpVector

Element in the domain of the operator which is back-projected

out : DiscreteLpVector, optional

Element in the reconstruction space to which the result is
written. If None an element in the range of the operator is
created.

	Returns:	out : DiscreteLpVector

Returns an element in the projection space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayBackProjection

RayBackProjection.derivative

	
RayBackProjection.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

RayTransform

	
class odl.tomo.operators.ray_trafo.RayTransform(discr_domain, geometry, impl='astra_cpu', **kwargs)

	Bases: odl.operator.operator.Operator

The discrete Ray transform between L^p spaces.

Attributes

	adjoint
	Return the adjoint operator.

	domain
	Set of objects on which this operator can be evaluated.

	geometry
	Geometry of this operator.

	impl
	Implementation back-end for evaluation of this operator.

	inverse
	Return the operator inverse.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x[,out])
	Apply the operator to x and store the result in out.

	derivative(point)
	Return the operator derivative at point.

	
__init__(discr_domain, geometry, impl='astra_cpu', **kwargs)

	Initialize a new instance.

	Parameters:	discr_domain : DiscreteLp

Discretized space, the domain of the forward projector

geometry : Geometry

Geometry of the transform, containing information about
the operator range

impl : {‘astra_cpu’, ‘astra_cuda’}, optional

Implementation back-end for the transform. Supported back-ends:
‘astra_cpu’: ASTRA toolbox using CPU, only 2D
‘astra_cuda’: ASTRA toolbox, using CUDA, 2D or 3D

interp : {‘nearest’, ‘linear’}

Interpolation type for the discretization of the operator
range.
Default: ‘nearest’

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform.adjoint

	
RayTransform.adjoint

	Return the adjoint operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform.domain

	
RayTransform.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform.geometry

	
RayTransform.geometry

	Geometry of this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform.impl

	
RayTransform.impl

	Implementation back-end for evaluation of this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform.inverse

	
RayTransform.inverse

	Return the operator inverse.

	Raises:	OpNotImplementedError

Since the inverse cannot be default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform.is_functional

	
RayTransform.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform.is_linear

	
RayTransform.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform.range

	
RayTransform.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform.__call__

	
RayTransform.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform._call

	
RayTransform._call(x, out=None)

	Apply the operator to x and store the result in out.

	Parameters:	x : DiscreteLpVector

Element in the domain of the operator to be forward projected

out : DiscreteLpVector, optional

Vector in the projection space to which the result is written.
If None creates an element in the range of the operator.

	Returns:	out : DiscreteLpVector

Returns an element in the projection space

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	operators

 	ray_trafo

 	RayTransform

RayTransform.derivative

	
RayTransform.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

util

Modules

	utility
	angles_from_matrix

	axis_rotation

	axis_rotation_matrix

	euler_matrix

	is_rotation_matrix

	perpendicular_vector

	to_lab_sys

	to_local_sys

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	util

utility

Functions

	angles_from_matrix(rot_matrix)
	

	axis_rotation(axis,angle,vectors)
	Rotate a vector or an array of vectors around an axis in 3d.

	axis_rotation_matrix(axis,angle)
	Matrix of the rotation around an axis in 3d.

	euler_matrix(*angles)
	Rotation matrix in 2 and 3 dimensions.

	is_rotation_matrix(mat[,show_diff])
	

	perpendicular_vector(vec)
	Return a vector perpendicular to vec.

	to_lab_sys(vec_in_local_coords,local_sys)
	

	to_local_sys(vec_in_lab_coords,local_sys)
	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	util

 	utility

angles_from_matrix

	
odl.tomo.util.utility.angles_from_matrix(rot_matrix)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	util

 	utility

axis_rotation

	
odl.tomo.util.utility.axis_rotation(axis, angle, vectors)

	Rotate a vector or an array of vectors around an axis in 3d.

The rotation is computed by Rodriguez’ rotation formula.

	Parameters:	axis : array-like, shape (3,)

The rotation axis, assumed to be a unit vector

angle : float

The rotation angle

vectors : array-like, shape (3,) or (N, 3)

The vector(s) to be rotated

	Returns:	rot_vec : numpy.ndarray

The rotated vector(s)

https://en.wikipedia.org/wiki/Rodrigues’_rotation_formula

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	util

 	utility

axis_rotation_matrix

	
odl.tomo.util.utility.axis_rotation_matrix(axis, angle)

	Matrix of the rotation around an axis in 3d.

The matrix is computed according to Rodriguez’ rotation formula.

	Parameters:	axis : array-like, shape (3,)

The rotation axis, assumed to be a unit vector

angle : float

The rotation angle

	Returns:	mat : numpy.ndarray, shape (3, 3)

The axis rotation matrix

https://en.wikipedia.org/wiki/Rodrigues’_rotation_formula

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	util

 	utility

euler_matrix

	
odl.tomo.util.utility.euler_matrix(*angles)

	Rotation matrix in 2 and 3 dimensions.

Compute the Euler rotation matrix from angles given in radians.
Its rows represent the canonical unit vectors as seen from the
rotated system while the columns are the rotated unit vectors as
seen from the canonical system.

	Parameters:	angle1,...,angleN : float

One angle results in a (2x2) matrix representing a
counter-clockwise rotation. Two or three angles result in a
(3x3) matrix and are interpreted as Euler angles of a 3d
rotation according to the ‘ZXZ’ rotation order, see the
Wikipedia article Euler angles.

	Returns:	mat : numpy.ndarray, shape (2, 2) or (3, 3)

The rotation matrix

https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	util

 	utility

is_rotation_matrix

	
odl.tomo.util.utility.is_rotation_matrix(mat, show_diff=False)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	util

 	utility

perpendicular_vector

	
odl.tomo.util.utility.perpendicular_vector(vec)

	Return a vector perpendicular to vec.

	Parameters:	vec : array-like

Vector of arbitrary length

	Returns:	perp_vec : numpy.ndarray

Array of same size such that <vec, perp_vec> == 0

Examples

Works in 2d:

>>> perpendicular_vector([1, 0])
array([0., 1.])
>>> perpendicular_vector([0, 1])
array([-1., 0.])

And in 3d:

>>> perpendicular_vector([1, 0, 0])
array([0., 1., 0.])
>>> perpendicular_vector([0, 1, 0])
array([-1., 0., 0.])
>>> perpendicular_vector([0, 0, 1])
array([1., 0., 0.])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	util

 	utility

to_lab_sys

	
odl.tomo.util.utility.to_lab_sys(vec_in_local_coords, local_sys)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	tomo

 	util

 	utility

to_local_sys

	
odl.tomo.util.utility.to_local_sys(vec_in_lab_coords, local_sys)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

trafos

Function transformations based on ODL.

Modules

	fourier
	DiscreteFourierTransform

	DiscreteFourierTransformInverse

	FourierTransform

	FourierTransformInverse

	dft_postprocess_data

	dft_preprocess_data

	inverse_reciprocal

	pyfftw_call

	reciprocal

	reciprocal_space

	wavelet
	WaveletTransform

	WaveletTransformInverse

	array_to_pywt_coeff

	coeff_size_list

	pywt_coeff_to_array

	wavelet_decomposition3d

	wavelet_reconstruction3d

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

fourier

Discretized Fourier transform on L^p spaces.

Classes

	DiscreteFourierTransform(dom[,ran,axes,...])
	Plain forward DFT, only evaluating the trigonometric sum.

	DiscreteFourierTransformInverse(ran[,dom,...])
	Plain backward DFT, only evaluating the trigonometric sum.

	FourierTransform(dom[,ran,impl])
	Discretized Fourier transform between discrete L^p spaces.

	FourierTransformInverse(ran[,dom,impl])
	Inverse of the discretized Fourier transform between L^p spaces.

Functions

	dft_postprocess_data(arr,real_grid,...[,...])
	Post-process the Fourier-space data after DFT.

	dft_preprocess_data(arr[,shift,axes,...])
	Pre-process the real-space data before DFT.

	inverse_reciprocal(grid,x0[,axes,...])
	Return the inverse reciprocal of the given regular grid.

	pyfftw_call(array_in,array_out[,...])
	Calculate the DFT with pyfftw.

	reciprocal(grid[,shift,axes,halfcomplex])
	Return the reciprocal of the given regular grid.

	reciprocal_space(space[,axes,halfcomplex,...])
	Return the range of the Fourier transform on space.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

DiscreteFourierTransform

	
class odl.trafos.fourier.DiscreteFourierTransform(dom, ran=None, axes=None, sign='-', halfcomplex=False, impl='numpy')

	Bases: odl.operator.operator.Operator

Plain forward DFT, only evaluating the trigonometric sum.

This operator calculates the forward DFT:

f_hat[k] = sum_j(f[j] * exp(-+ 1j*2*pi * j*k/N))

without any further shifting or scaling compensation. See the
Numpy FFT documentation [http://docs.scipy.org/doc/numpy/reference/routines.fft.html], the pyfftw API documentation [http://hgomersall.github.io/pyFFTW/pyfftw/pyfftw.html] or
What FFTW really computes [http://www.fftw.org/fftw3_doc/What-FFTW-Really-Computes.html] for further information.

See also

	numpy.fft.fftn

	n-dimensional FFT routine

	numpy.fft.rfftn

	n-dimensional half-complex FFT

	pyfftw_call

	apply an FFTW transform

References

Attributes

	adjoint
	Adjoint transform, equal to the inverse.

	axes
	Axes along the FT is calculated by this operator.

	domain
	Set of objects on which this operator can be evaluated.

	halfcomplex
	Return True if the last transform axis is halved.

	impl
	Backend for the FFT implementation.

	inverse
	Inverse Fourier transform.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

	sign
	Sign of the complex exponent in the transform.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x,out,**kwargs)
	Implement self(x, out[, **kwargs]).

	clear_fftw_plan()
	Delete the FFTW plan of this transform.

	derivative(point)
	Return the operator derivative at point.

	init_fftw_plan([planning_effort])
	Initialize the FFTW plan for this transform for later use.

	
__init__(dom, ran=None, axes=None, sign='-', halfcomplex=False, impl='numpy')

	Initialize a new instance.

	Parameters:	dom : DiscreteLp

Domain of the Fourier transform. If its
DiscreteLp.exponent is equal to 2.0, this operator has
an adjoint which is equal to the inverse.

ran : DiscreteLp, optional

Range of the Fourier transform. If not given, the range
is determined from dom and the other parameters as
a discr_sequence_space with exponent p / (p - 1)
(read as ‘inf’ for p=1 and 1 for p=’inf’).

axes : sequence of int, optional

Dimensions in which a transform is to be calculated. None
means all axes.

sign : {‘-‘, ‘+’}, optional

Sign of the complex exponent. Default: ‘-‘

halfcomplex : bool, optional

If True, calculate only the negative frequency part
along the last axis in axes for real input. This
reduces the size of the range to floor(N[i]/2) + 1 in
this axis i, where N is the shape of the input
arrays.
Otherwise, calculate the full complex FFT. If dom_dtype
is a complex type, this option has no effect.

impl : {‘numpy’, ‘pyfftw’}

Backend for the FFT implementation. The ‘pyfftw’ backend
is faster but requires the pyfftw package.

Examples

Complex-to-complex (default) transforms have the same grids
in domain and range:

>>> domain = discr_sequence_space((2, 4))
>>> fft = DiscreteFourierTransform(domain)
>>> fft.domain.shape
(2, 4)
>>> fft.range.shape
(2, 4)

Real-to-complex transforms have a range grid with shape
n // 2 + 1 in the last tranform axis:

>>> domain = discr_sequence_space((2, 3, 4), dtype='float')
>>> axes = (0, 1)
>>> fft = DiscreteFourierTransform(
... domain, halfcomplex=True, axes=axes)
>>> fft.range.shape # shortened in the second axis
(2, 2, 4)
>>> fft.domain.shape
(2, 3, 4)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.adjoint

	
DiscreteFourierTransform.adjoint

	Adjoint transform, equal to the inverse.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.axes

	
DiscreteFourierTransform.axes

	Axes along the FT is calculated by this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.domain

	
DiscreteFourierTransform.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.halfcomplex

	
DiscreteFourierTransform.halfcomplex

	Return True if the last transform axis is halved.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.impl

	
DiscreteFourierTransform.impl

	Backend for the FFT implementation.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.inverse

	
DiscreteFourierTransform.inverse

	Inverse Fourier transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.is_functional

	
DiscreteFourierTransform.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.is_linear

	
DiscreteFourierTransform.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.range

	
DiscreteFourierTransform.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.sign

	
DiscreteFourierTransform.sign

	Sign of the complex exponent in the transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.__call__

	
DiscreteFourierTransform.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform._call

	
DiscreteFourierTransform._call(x, out, **kwargs)

	Implement self(x, out[, **kwargs]).

	Parameters:	x : domain element

Discretized function to be transformed

out : range element

Element to which the output is written

See also

	pyfftw_call

	Call pyfftw backend directly

Notes

See the pyfftw_call function for **kwargs options.
The parameters axes and halfcomplex cannot be
overridden.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.clear_fftw_plan

	
DiscreteFourierTransform.clear_fftw_plan()

	Delete the FFTW plan of this transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.derivative

	
DiscreteFourierTransform.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransform

DiscreteFourierTransform.init_fftw_plan

	
DiscreteFourierTransform.init_fftw_plan(planning_effort='measure', **kwargs)

	Initialize the FFTW plan for this transform for later use.

If the implementation of this operator is not ‘pyfftw’, this
method has no effect.

	Parameters:	planning_effort : {‘estimate’, ‘measure’, ‘patient’, ‘exhaustive’}

Flag for the amount of effort put into finding an optimal
FFTW plan. See the FFTW doc on planner flags [http://www.fftw.org/fftw3_doc/Planner-Flags.html].

planning_timelimit : float, optional

Limit planning time to roughly this amount of seconds.
Default: None (no limit)

threads : int, optional

Number of threads to use. Default: 1

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

DiscreteFourierTransformInverse

	
class odl.trafos.fourier.DiscreteFourierTransformInverse(ran, dom=None, axes=None, sign='+', halfcomplex=False, impl='numpy')

	Bases: odl.trafos.fourier.DiscreteFourierTransform

Plain backward DFT, only evaluating the trigonometric sum.

This operator calculates the inverse DFT:

f[k] = 1/prod(N) * sum_j(f_hat[j] * exp(+- 1j*2*pi * j*k/N))

without any further shifting or scaling compensation. See the
Numpy FFT documentation [http://docs.scipy.org/doc/numpy/reference/routines.fft.html], the pyfftw API documentation [http://hgomersall.github.io/pyFFTW/pyfftw/pyfftw.html] or
What FFTW really computes [http://www.fftw.org/fftw3_doc/What-FFTW-Really-Computes.html] for further information.

See also

	numpy.fft.ifftn

	n-dimensional inverse FFT routine

	numpy.fft.irfftn

	n-dimensional half-complex inverse FFT

	pyfftw_call

	apply an FFTW transform

References

Attributes

	adjoint
	Adjoint transform, equal to the inverse.

	axes
	Axes along the FT is calculated by this operator.

	domain
	Set of objects on which this operator can be evaluated.

	halfcomplex
	Return True if the last transform axis is halved.

	impl
	Backend for the FFT implementation.

	inverse
	Inverse Fourier transform.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

	sign
	Sign of the complex exponent in the transform.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x,out,**kwargs)
	Implement self(x, out[, **kwargs]).

	clear_fftw_plan()
	Delete the FFTW plan of this transform.

	derivative(point)
	Return the operator derivative at point.

	init_fftw_plan([planning_effort])
	Initialize the FFTW plan for this transform for later use.

	
__init__(ran, dom=None, axes=None, sign='+', halfcomplex=False, impl='numpy')

	Initialize a new instance.

	Parameters:	ran : DiscreteLp

Range of the inverse Fourier transform. If its
DiscreteLp.exponent is equal to 2.0, this operator has
an adjoint which is equal to the inverse.

dom : DiscreteLp, optional

Domain of the inverse Fourier transform. If not given, the
domain is determined from ran and the other parameters
as a discr_sequence_space with exponent p / (p - 1)
(read as ‘inf’ for p=1 and 1 for p=’inf’).

axes : sequence of int, optional

Dimensions in which a transform is to be calculated. None
means all axes.

sign : {‘-‘, ‘+’}, optional

Sign of the complex exponent. Default: ‘-‘

halfcomplex : bool, optional

If True, interpret the last axis in axes as the
negative frequency part of the transform of a real signal
and calculate a “half-complex-to-real” inverse FFT. In this
case, the domain has by default the shape
floor(N[i]/2) + 1 in this axis i.
Otherwise, domain and range have the same shape. If
ran is a complex space, this option has no effect.

impl : {‘numpy’, ‘pyfftw’}

Backend for the FFT implementation. The ‘pyfftw’ backend
is faster but requires the pyfftw package.

Examples

Complex-to-complex (default) transforms have the same grids
in domain and range:

>>> range_ = discr_sequence_space((2, 4))
>>> ifft = DiscreteFourierTransformInverse(range_)
>>> ifft.domain.shape
(2, 4)
>>> ifft.range.shape
(2, 4)

Complex-to-real transforms have a domain grid with shape
n // 2 + 1 in the last tranform axis:

>>> range_ = discr_sequence_space((2, 3, 4), dtype='float')
>>> axes = (0, 1)
>>> ifft = DiscreteFourierTransformInverse(
... range_, halfcomplex=True, axes=axes)
>>> ifft.domain.shape # shortened in the second axis
(2, 2, 4)
>>> ifft.range.shape
(2, 3, 4)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.adjoint

	
DiscreteFourierTransformInverse.adjoint

	Adjoint transform, equal to the inverse.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.axes

	
DiscreteFourierTransformInverse.axes

	Axes along the FT is calculated by this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.domain

	
DiscreteFourierTransformInverse.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.halfcomplex

	
DiscreteFourierTransformInverse.halfcomplex

	Return True if the last transform axis is halved.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.impl

	
DiscreteFourierTransformInverse.impl

	Backend for the FFT implementation.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.inverse

	
DiscreteFourierTransformInverse.inverse

	Inverse Fourier transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.is_functional

	
DiscreteFourierTransformInverse.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.is_linear

	
DiscreteFourierTransformInverse.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.range

	
DiscreteFourierTransformInverse.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.sign

	
DiscreteFourierTransformInverse.sign

	Sign of the complex exponent in the transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.__call__

	
DiscreteFourierTransformInverse.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse._call

	
DiscreteFourierTransformInverse._call(x, out, **kwargs)

	Implement self(x, out[, **kwargs]).

	Parameters:	x : domain element

Discretized function to be transformed

out : range element

Element to which the output is written

See also

	pyfftw_call

	Call pyfftw backend directly

Notes

See the pyfftw_call function for **kwargs options.
The parameters axes and halfcomplex cannot be
overridden.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.clear_fftw_plan

	
DiscreteFourierTransformInverse.clear_fftw_plan()

	Delete the FFTW plan of this transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.derivative

	
DiscreteFourierTransformInverse.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	DiscreteFourierTransformInverse

DiscreteFourierTransformInverse.init_fftw_plan

	
DiscreteFourierTransformInverse.init_fftw_plan(planning_effort='measure', **kwargs)

	Initialize the FFTW plan for this transform for later use.

If the implementation of this operator is not ‘pyfftw’, this
method has no effect.

	Parameters:	planning_effort : {‘estimate’, ‘measure’, ‘patient’, ‘exhaustive’}

Flag for the amount of effort put into finding an optimal
FFTW plan. See the FFTW doc on planner flags [http://www.fftw.org/fftw3_doc/Planner-Flags.html].

planning_timelimit : float, optional

Limit planning time to roughly this amount of seconds.
Default: None (no limit)

threads : int, optional

Number of threads to use. Default: 1

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

FourierTransform

	
class odl.trafos.fourier.FourierTransform(dom, ran=None, impl='numpy', **kwargs)

	Bases: odl.operator.operator.Operator

Discretized Fourier transform between discrete L^p spaces.

This operator is the discretized variant of the continuous
Fourier Transform [https://en.wikipedia.org/wiki/Fourier_Transform] between
Lebesgue L^p spaces. It applies a three-step procedure consisting
of a pre-processing step of the data, an FFT evaluation and
a post-processing step. Pre- and post-processing account for
the shift and scaling of the real-space and Fourier-space grids.

The sign convention (‘-‘ vs. ‘+’) can be changed with the sign
parameter.

See also

dft_preprocess_data, pyfftw_call, dft_postprocess_data

Attributes

	adjoint
	The adjoint Fourier transform.

	axes
	Axes along the FT is calculated by this operator.

	domain
	Set of objects on which this operator can be evaluated.

	halfcomplex
	Return True if the last transform axis is halved.

	impl
	Backend for the FFT implementation.

	inverse
	The inverse Fourier transform.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

	shifts
	Return the boolean list indicating shifting per axis.

	sign
	Sign of the complex exponent in the transform.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x,out,**kwargs)
	Implement self(x, out[, **kwargs]).

	clear_fftw_plan()
	Delete the FFTW plan of this transform.

	clear_temporaries()
	Set the temporaries to None.

	create_temporaries([r,f])
	Allocate and store reusable temporaries.

	derivative(point)
	Return the operator derivative at point.

	init_fftw_plan([planning_effort])
	Initialize the FFTW plan for this transform for later use.

	
__init__(dom, ran=None, impl='numpy', **kwargs)

	Initialize a new instance.

	Parameters:	dom : DiscreteLp

Domain of the Fourier transform. If the
DiscreteLp.exponent of dom and ran are equal
to 2.0, this operator has an adjoint which is equal to its
inverse.

ran : DiscreteLp, optional

Range of the Fourier transform. If not given, the range
is determined from dom and the other parameters. The
exponent is chosen to be the conjugate p / (p - 1),
which reads as ‘inf’ for p=1 and 1 for p=’inf’.

impl : {‘numpy’, ‘pyfftw’}

Backend for the FFT implementation. The ‘pyfftw’ backend
is faster but requires the pyfftw package.

axes : sequence of int, optional

Dimensions along which to take the transform.
Default: all axes

sign : {‘-‘, ‘+’}, optional

Sign of the complex exponent. Default: ‘-‘

halfcomplex : bool, optional

If True, calculate only the negative frequency part
along the last axis for real input. If False,
calculate the full complex FFT.
For complex dom, it has no effect.
Default: True

shift : bool or sequence of bool, optional

If True, the reciprocal grid is shifted by half a stride in
the negative direction. With a boolean sequence, this option
is applied separately to each axis.
If a sequence is provided, it must have the same length as
axes if supplied. Note that this must be set to True
in the halved axis in half-complex transforms.
Default: True

	Other Parameters:

		tmp_r : DiscreteLpVector or numpy.ndarray

Temporary for calculations in the real space (domain of
this transform). It is shared with the inverse.

Variants using this: R2C, R2HC, C2R (inverse)

tmp_f : DiscreteLpVector or numpy.ndarray

Temporary for calculations in the frequency (reciprocal)
space. It is shared with the inverse.

Variants using this: R2C, C2R (inverse), HC2R (inverse)

Notes

	The transform variants are:
	C2C: complex-to-complex.
The default variant, one-to-one and unitary.

	R2C: real-to-complex.
This variant has no adjoint, and the inverse may suffer
from information loss since the result is cast to real.

	R2HC: real-to-halfcomplex.
This variant stores only a half-space of frequencies and
is guaranteed to be one-to-one (invertible).

	The Operator.range of this operator always has the
ComplexNumbers as LinearSpace.field, i.e. if the
field of dom is the RealNumbers, this operator has no
Operator.adjoint.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.adjoint

	
FourierTransform.adjoint

	The adjoint Fourier transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.axes

	
FourierTransform.axes

	Axes along the FT is calculated by this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.domain

	
FourierTransform.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.halfcomplex

	
FourierTransform.halfcomplex

	Return True if the last transform axis is halved.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.impl

	
FourierTransform.impl

	Backend for the FFT implementation.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.inverse

	
FourierTransform.inverse

	The inverse Fourier transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.is_functional

	
FourierTransform.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.is_linear

	
FourierTransform.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.range

	
FourierTransform.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.shifts

	
FourierTransform.shifts

	Return the boolean list indicating shifting per axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.sign

	
FourierTransform.sign

	Sign of the complex exponent in the transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.__call__

	
FourierTransform.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform._call

	
FourierTransform._call(x, out, **kwargs)

	Implement self(x, out[, **kwargs]).

	Parameters:	x : domain element

Discretized function to be transformed

out : range element

Element to which the output is written

See also

	pyfftw_call

	Call pyfftw backend directly

Notes

See the pyfftw_call function for **kwargs options.
The parameters axes and halfcomplex cannot be
overridden.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.clear_fftw_plan

	
FourierTransform.clear_fftw_plan()

	Delete the FFTW plan of this transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.clear_temporaries

	
FourierTransform.clear_temporaries()

	Set the temporaries to None.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.create_temporaries

	
FourierTransform.create_temporaries(r=True, f=True)

	Allocate and store reusable temporaries.

Existing temporaries are overwritten.

	Parameters:	r : bool, optional

Create temporary for the real space

f : bool, optional

Create temporary for the frequency space

See also

clear_temporaries

	clear_fftw_plan

	can also hold references to the temporaries

Notes

To save memory, clear the temporaries when the transform is
no longer used.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.derivative

	
FourierTransform.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransform

FourierTransform.init_fftw_plan

	
FourierTransform.init_fftw_plan(planning_effort='measure', **kwargs)

	Initialize the FFTW plan for this transform for later use.

If the implementation of this operator is not ‘pyfftw’, this
method has no effect.

	Parameters:	planning_effort : {‘estimate’, ‘measure’, ‘patient’, ‘exhaustive’}

Flag for the amount of effort put into finding an optimal
FFTW plan. See the FFTW doc on planner flags [http://www.fftw.org/fftw3_doc/Planner-Flags.html].

planning_timelimit : float, optional

Limit planning time to roughly this amount of seconds.
Default: None (no limit)

threads : int, optional

Number of threads to use. Default: 1

See also

clear_fftw_plan

Notes

To save memory, clear the plan when the transform is no longer
used (the plan stores 2 arrays).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

FourierTransformInverse

	
class odl.trafos.fourier.FourierTransformInverse(ran, dom=None, impl='numpy', **kwargs)

	Bases: odl.trafos.fourier.FourierTransform

Inverse of the discretized Fourier transform between L^p spaces.

This operator is the exact inverse of the FourierTransform, and
not a discretization of the Fourier integral with “+” sign in
the complex exponent. For the latter, use the sign parameter
of the forward transform.

See also

FourierTransform

Attributes

	adjoint
	The adjoint Fourier transform.

	axes
	Axes along the FT is calculated by this operator.

	domain
	Set of objects on which this operator can be evaluated.

	halfcomplex
	Return True if the last transform axis is halved.

	impl
	Backend for the FFT implementation.

	inverse
	Inverse of the inverse, the forward FT.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	range
	Set in which the result of an evaluation of this operator lies.

	shifts
	Return the boolean list indicating shifting per axis.

	sign
	Sign of the complex exponent in the transform.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x,out,**kwargs)
	Implement self(x, out[, **kwargs]).

	clear_fftw_plan()
	Delete the FFTW plan of this transform.

	clear_temporaries()
	Set the temporaries to None.

	create_temporaries([r,f])
	Allocate and store reusable temporaries.

	derivative(point)
	Return the operator derivative at point.

	init_fftw_plan([planning_effort])
	Initialize the FFTW plan for this transform for later use.

	
__init__(ran, dom=None, impl='numpy', **kwargs)

	

	Parameters:	ran : DiscreteLp

Range of the inverse Fourier transform. If the
DiscreteLp.exponent of dom and ran are equal
to 2.0, this operator has an adjoint which is equal to its
inverse.

dom : DiscreteLp, optional

Domain of the inverse Fourier transform. If not given, the
domain is determined from ran and the other parameters.
The exponent is chosen to be the conjugate p / (p - 1),
which reads as ‘inf’ for p=1 and 1 for p=’inf’.

impl : {‘numpy’, ‘pyfftw’}

Backend for the FFT implementation. The ‘pyfftw’ backend
is faster but requires the pyfftw package.

axes : sequence of int, optional

Dimensions along which to take the transform.
Default: all axes

sign : {‘-‘, ‘+’}, optional

Sign of the complex exponent. Default: ‘+’

halfcomplex : bool, optional

If True, calculate only the negative frequency part
along the last axis for real input. If False,
calculate the full complex FFT.
For complex dom, it has no effect.
Default: True

shift : bool or sequence of bool, optional

If True, the reciprocal grid is shifted by half a stride in
the negative direction. With a boolean sequence, this option
is applied separately to each axis.
If a sequence is provided, it must have the same length as
axes if supplied. Note that this must be set to True
in the halved axis in half-complex transforms.
Default: True

	Other Parameters:

		tmp_r : DiscreteLpVector or numpy.ndarray

Temporary for calculations in the real space (range of
this transform). It is shared with the inverse.

Variants using this: C2R, R2C (forward), R2HC (forward)

tmp_f : DiscreteLpVector or numpy.ndarray

Temporary for calculations in the frequency (reciprocal)
space. It is shared with the inverse.

Variants using this: C2R, HC2R, R2C (forward)

Notes

	The transform variants are:
	C2C: complex-to-complex.
The default variant, one-to-one and unitary.

	C2R: complex-to-real.
This variant has no adjoint and may suffer from information
loss since the result is cast to real.

	HC2R: halfcomplex-to-real.
This variant interprets input as a signal on a half-space
of frequencies. It is guaranteed to be one-to-one
(invertible).

	The Operator.domain of this operator always has the
ComplexNumbers as LinearSpace.field, i.e. if the
field of ran is the RealNumbers, this operator has no
Operator.adjoint.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.adjoint

	
FourierTransformInverse.adjoint

	The adjoint Fourier transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.axes

	
FourierTransformInverse.axes

	Axes along the FT is calculated by this operator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.domain

	
FourierTransformInverse.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.halfcomplex

	
FourierTransformInverse.halfcomplex

	Return True if the last transform axis is halved.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.impl

	
FourierTransformInverse.impl

	Backend for the FFT implementation.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.inverse

	
FourierTransformInverse.inverse

	Inverse of the inverse, the forward FT.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.is_functional

	
FourierTransformInverse.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.is_linear

	
FourierTransformInverse.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.range

	
FourierTransformInverse.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.shifts

	
FourierTransformInverse.shifts

	Return the boolean list indicating shifting per axis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.sign

	
FourierTransformInverse.sign

	Sign of the complex exponent in the transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.__call__

	
FourierTransformInverse.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse._call

	
FourierTransformInverse._call(x, out, **kwargs)

	Implement self(x, out[, **kwargs]).

	Parameters:	x : domain element

Discretized function to be transformed

out : range element

Element to which the output is written

See also

	pyfftw_call

	Call pyfftw backend directly

Notes

See the pyfftw_call function for **kwargs options.
The parameters axes and halfcomplex cannot be
overridden.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.clear_fftw_plan

	
FourierTransformInverse.clear_fftw_plan()

	Delete the FFTW plan of this transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.clear_temporaries

	
FourierTransformInverse.clear_temporaries()

	Set the temporaries to None.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.create_temporaries

	
FourierTransformInverse.create_temporaries(r=True, f=True)

	Allocate and store reusable temporaries.

Existing temporaries are overwritten.

	Parameters:	r : bool, optional

Create temporary for the real space

f : bool, optional

Create temporary for the frequency space

See also

clear_temporaries

	clear_fftw_plan

	can also hold references to the temporaries

Notes

To save memory, clear the temporaries when the transform is
no longer used.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.derivative

	
FourierTransformInverse.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

 	FourierTransformInverse

FourierTransformInverse.init_fftw_plan

	
FourierTransformInverse.init_fftw_plan(planning_effort='measure', **kwargs)

	Initialize the FFTW plan for this transform for later use.

If the implementation of this operator is not ‘pyfftw’, this
method has no effect.

	Parameters:	planning_effort : {‘estimate’, ‘measure’, ‘patient’, ‘exhaustive’}

Flag for the amount of effort put into finding an optimal
FFTW plan. See the FFTW doc on planner flags [http://www.fftw.org/fftw3_doc/Planner-Flags.html].

planning_timelimit : float, optional

Limit planning time to roughly this amount of seconds.
Default: None (no limit)

threads : int, optional

Number of threads to use. Default: 1

See also

clear_fftw_plan

Notes

To save memory, clear the plan when the transform is no longer
used (the plan stores 2 arrays).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

dft_postprocess_data

	
odl.trafos.fourier.dft_postprocess_data(arr, real_grid, recip_grid, shifts, axes, interp, sign='-', op='multiply', out=None)

	Post-process the Fourier-space data after DFT.

This function multiplies the given data with the separable
function:

q(xi) = exp(+- 1j * dot(x[0], xi)) * s * phi_hat(xi_bar)

where x[0] and s are the minimum point and the stride of
the real-space grid, respectively, and phi_hat(xi_bar) is the FT
of the interpolation kernel. The sign of the exponent depends on the
choice of sign. Note that for op='divide' the
multiplication with s * phi_hat(xi_bar) is replaced by a
division with the same array.

In discretized form on the reciprocal grid, the exponential part
of this function becomes an array:

q[k] = exp(+- 1j * dot(x[0], xi[k]))

and the arguments xi_bar to the interpolation kernel
are the normalized frequencies:

for 'shift=True' : xi_bar[k] = -pi + pi * (2*k) / N
for 'shift=False' : xi_bar[k] = -pi + pi * (2*k+1) / N

See [Pre+2007], Section 13.9 “Computing Fourier Integrals Using
the FFT” for a similar approach.

	Parameters:	arr : array-like

Array to be pre-processed. An array with real data type is
converted to its complex counterpart.

real_grid : RegularGrid

Real space grid in the transform

recip_grid : RegularGrid

Reciprocal grid in the transform

shifts : sequence of bool

If True, the grid is shifted by half a stride in the negative
direction in the corresponding axes. The sequence must have the
same length as axes.

axes : sequence of int

Dimensions along which to take the transform. The sequence must
have the same length as shifts.

interp : str or sequence of str

Interpolation scheme used in the real-space

sign : {‘-‘, ‘+’}, optional

Sign of the complex exponent

op : {‘multiply’, ‘divide’}

Operation to perform with the stride times the interpolation
kernel FT

out : numpy.ndarray, optional

Array in which the result is stored. If out is arr, an
in-place modification is performed.

	Returns:	out : numpy.ndarray

Result of the post-processing. If out was given, the returned
object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

dft_preprocess_data

	
odl.trafos.fourier.dft_preprocess_data(arr, shift=True, axes=None, sign='-', out=None)

	Pre-process the real-space data before DFT.

This function multiplies the given data with the separable
function:

p(x) = exp(+- 1j * dot(x - x[0], xi[0]))

where x[0] and xi[0] are the minimum coodinates of
the real-space and reciprocal grids, respectively. The sign of
the exponent depends on the choice of sign. In discretized
form, this function becomes an array:

p[k] = exp(+- 1j * k * s * xi[0])

If the reciprocal grid is not shifted, i.e. symmetric around 0,
it is xi[0] = pi/s * (-1 + 1/N), hence:

p[k] = exp(-+ 1j * pi * k * (1 - 1/N))

For a shifted grid, we have :math:xi[0] = -pi/s, thus the
array is given by:

p[k] = (-1)**k

	Parameters:	arr : array-like

Array to be pre-processed. If its data type is a real
non-floating type, it is converted to ‘float64’.

shift : bool or sequence of bool, optional

If True, the grid is shifted by half a stride in the negative
direction. With a sequence, this option is applied separately on
each axis.

axes : sequence of int, optional

Dimensions in which to calculate the reciprocal. The sequence
must have the same length as shift if the latter is given
as a sequence. None means all axes in dfunc.

sign : {‘-‘, ‘+’}, optional

Sign of the complex exponent

out : numpy.ndarray, optional

Array in which the result is stored. If out is arr,
an in-place modification is performed. For real data type,
this is only possible for shift=True since the factors are
complex otherwise.

	Returns:	out : numpy.ndarray

Result of the pre-processing. If out was given, the returned
object is a reference to it.

Notes

If out is not specified, the data type of the returned array
is the same as that of arr except when arr has real data
type and shift is not True. In this case, the return type
is the complex counterpart of arr.dtype.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

inverse_reciprocal

	
odl.trafos.fourier.inverse_reciprocal(grid, x0, axes=None, halfcomplex=False, halfcx_parity='even')

	Return the inverse reciprocal of the given regular grid.

Given a reciprocal grid:

xi[j] = xi[0] + j * sigma,

with a multi-index j = (j[0], ..., j[d-1]) in the range
0 <= j < M, this function calculates the original grid:

x[k] = x[0] + k * s

by using a provided x[0] and calculating the stride s.

If the reciprocal grid is interpreted as coming from a usual
complex-to-complex FFT, it is N == M, and the stride is:

s = 2*pi / (sigma * N)

For a reciprocal grid from a real-to-complex (half-complex) FFT,
it is M[i] = floor(N[i]/2) + 1 in the last transform axis i.
To resolve the ambiguity regarding the parity of N[i], the
it must be specified if the output shape should be even or odd,
resulting in:

odd : N[i] = 2 * M[i] - 1
even: N[i] = 2 * M[i] - 2

The output stride is calculated with this N as above in this
case.

	Parameters:	grid : RegularGrid

Original sampling grid

x0 : array-like

Minimal point of the inverse reciprocal grid

axes : sequence of int, optional

Dimensions in which to calculate the reciprocal. The sequence
must have the same length as shift if the latter is given
as a sequence. None means all axes in grid.

halfcomplex : bool, optional

If True, interpret the given grid as the reciprocal as used
in a half-complex FFT (see above). Otherwise, the grid is
regarded as being used in a complex-to-complex transform.

halfcx_parity : {‘even’, ‘odd’}

Use this parity for the shape of the returned grid in the
last axis of axes in the case halfcomplex=True

	Returns:	irecip : RegularGrid

The inverse reciprocal grid

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

pyfftw_call

	
odl.trafos.fourier.pyfftw_call(array_in, array_out, direction='forward', axes=None, halfcomplex=False, **kwargs)

	Calculate the DFT with pyfftw.

The discrete Fourier (forward) transform calcuates the sum:

f_hat[k] = sum_j(f[j] * exp(-2*pi*1j * j*k/N))

where the summation is taken over all indices
j = (j[0], ..., j[d-1]) in the range 0 <= j < N
(component-wise), with N being the shape of the input array.

The output indices k lie in the same range, except
for half-complex transforms, where the last axis i in axes
is shortened to 0 <= k[i] < floor(N[i]/2) + 1.

In the backward transform, sign of the the exponential argument
is flipped.

	Parameters:	array_in : numpy.ndarray

Array to be transformed

array_out : numpy.ndarray

Output array storing the transformed values, may be aligned
with array_in.

direction : {‘forward’, ‘backward’}

Direction of the transform

axes : sequence of int, optional

Dimensions along which to take the transform. None means
using all axis and is equivalent to np.arange(ndim).

halfcomplex : bool, optional

If True, calculate only the negative frequency part along the
last axis. If False, calculate the full complex FFT.
This option can only be used with real input data.

	Returns:	fftw_plan : pyfftw.FFTW

The plan object created from the input arguments. It can be
reused for transforms of the same size with the same data types.
Note that reuse only gives a speedup if the initial plan
used a planner flag other than 'estimate'.
If fftw_plan was specified, the returned object is a
reference to it.

	Other Parameters:

		fftw_plan : pyfftw.FFTW, optional

Use this plan instead of calculating a new one. If specified,
the options planning_effort, planning_timelimit and
threads have no effect.

planning_effort : {‘estimate’, ‘measure’, ‘patient’, ‘exhaustive’}

Flag for the amount of effort put into finding an optimal
FFTW plan. See the FFTW doc on planner flags [http://www.fftw.org/fftw3_doc/Planner-Flags.html].
Default: ‘estimate’.

planning_timelimit : float, optional

Limit planning time to roughly this amount of seconds.
Default: None (no limit)

threads : int, optional

Number of threads to use.
Default: Number of CPUs if the number of data points is larger
than 1000, else 1.

normalise_idft : bool, optional

If True, the backward transform is normalized by
1 / N, where N is the total number of points in
array_in[axes]. This ensures that the IDFT is the true
inverse of the forward DFT.
Default: False

import_wisdom : filename or file handle, optional

File to load FFTW wisdom from. If the file does not exist,
it is ignored.

export_wisdom : filename or file handle, optional

File to append the accumulated FFTW wisdom to

Notes

	The planning and direction flags can also be specified as
capitalized and prepended by 'FFTW_', i.e. in the original
FFTW form.

	For a halfcomplex forward transform, the arrays must fulfill
array_out.shape[axes[-1]] == array_in.shape[axes[-1]] // 2 + 1,
and vice versa for backward transforms.

	All planning schemes except 'estimate' require an internal copy
of the input array but are often several times faster after the
first call (measuring results are cached). Typically,
‘measure’ is a good compromise. If you cannot afford the copy,
use 'estimate'.

	If a plan is provided via the fftw_plan parameter, no copy
is needed internally.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

reciprocal

	
odl.trafos.fourier.reciprocal(grid, shift=True, axes=None, halfcomplex=False)

	Return the reciprocal of the given regular grid.

This function calculates the reciprocal (Fourier/frequency space)
grid for a given regular grid defined by the nodes:

x[k] = x[0] + k * s,

where k = (k[0], ..., k[d-1]) is a d-dimensional index in
the range 0 <= k < N (component-wise). The multi-index
N is the shape of the input grid.
This grid’s reciprocal is then given by the nodes:

xi[j] = xi[0] + j * sigma,

with the reciprocal grid stride sigma = 2*pi / (s * N).
The minimum frequency xi[0] can in principle be chosen
freely, but usually it is chosen in a such a way that the reciprocal
grid is centered around zero. For this, there are two possibilities:

	Make the grid point-symmetric around 0.

	Make the grid “almost” point-symmetric around zero by shifting
it to the left by half a reciprocal stride.

In the first case, the minimum frequency (per axis) is given as:

xi_1[0] = -pi/s + pi/(s*n) = -pi/s + sigma/2.

For the second case, it is:

xi_1[0] = -pi / s.

Note that the zero frequency is contained in case 1 for an odd
number of points, while for an even size, the second option
guarantees that 0 is contained.

If a real-to-complex (half-complex) transform is to be computed,
the reciprocal grid has the shape M[i] = floor(N[i]/2) + 1
in the last transform axis i.

	Parameters:	grid : RegularGrid

Original sampling grid

shift : bool or sequence of bool, optional

If True, the grid is shifted by half a stride in the negative
direction. With a sequence, this option is applied separately on
each axis.

axes : sequence of int, optional

Dimensions in which to calculate the reciprocal. The sequence
must have the same length as shift if the latter is given
as a sequence. None means all axes in grid.

halfcomplex : bool, optional

If True, return the half of the grid with last coordinate
less than zero. This is related to the fact that for real-valued
functions, the other half is the mirrored complex conjugate of
the given half and therefore needs not be stored.

	Returns:	recip : RegularGrid

The reciprocal grid

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	fourier

reciprocal_space

	
odl.trafos.fourier.reciprocal_space(space, axes=None, halfcomplex=False, shift=True, **kwargs)

	Return the range of the Fourier transform on space.

	Parameters:	space : DiscreteLp

Real space whose reciprocal is calculated. It must be
uniformly discretized.

axes : sequence of int, optional

Dimensions along which the Fourier transform is taken.
Default: all axes

halfcomplex : bool, optional

If True, take only the negative frequency part along the last
axis for. If False, use the full frequency space.
This option can only be used if space is a space of
real-valued functions.
Default: False

shift : bool or sequence of bool, optional

If True, the reciprocal grid is shifted by half a stride in
the negative direction. With a boolean sequence, this option
is applied separately to each axis.
If a sequence is provided, it must have the same length as
axes if supplied. Note that this must be set to True
in the halved axis in half-complex transforms.
Default: True

exponent : float, optional

Create a space with this exponent. By default, the conjugate
exponent q = p / (p - 1) of the exponent of space is
used, where q = inf for p = 1 and vice versa.

dtype : optional

Complex data type of the reciprocal space. By default, the
complex counterpart of space.dtype is used.

	Returns:	rspace : DiscreteLp

Reciprocal of the input space. If halfcomplex=True, the
upper end of the domain (where the half space ends) is chosen to
coincide with the grid node.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

wavelet

Discrete wavelet transformation on L2 spaces.

Classes

	WaveletTransform(dom,nscales,wbasis,mode)
	Discrete wavelet trafo between discrete L2 spaces.

	WaveletTransformInverse(ran,nscales,...)
	Discrete inverse wavelet trafo between discrete L2 spaces.

Functions

	array_to_pywt_coeff(coeff,size_list)
	Convert a flat array into a pywt [http://www.pybytes.com/pywavelets/] coefficient list.

	coeff_size_list(shape,nscales,wbasis,mode)
	Construct a size list from given wavelet coefficients.

	pywt_coeff_to_array(coeff,size_list)
	Convert a Pywavelets coefficient list into a flat array.

	wavelet_decomposition3d(x,wbasis,mode,nscales)
	Discrete 3D multiresolution wavelet decomposition.

	wavelet_reconstruction3d(coeff_list,wbasis,...)
	Discrete 3D multiresolution wavelet reconstruction

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

WaveletTransform

	
class odl.trafos.wavelet.WaveletTransform(dom, nscales, wbasis, mode)

	Bases: odl.operator.operator.Operator

Discrete wavelet trafo between discrete L2 spaces.

Attributes

	adjoint
	The adjoint wavelet transform.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	The inverse wavelet transform.

	is_biorthogonal
	Whether or not the wavelet basis is bi-orthogonal.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	is_orthogonal
	Whether or not the wavelet basis is orthogonal.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(x)
	Compute the discrete wavelet transform.

	derivative(point)
	Return the operator derivative at point.

	
__init__(dom, nscales, wbasis, mode)

	Initialize a new instance.

	Parameters:	dom : DiscreteLp

Domain of the wavelet transform (the “image domain”).
The exponent [image: p] of the discrete [image: L^p]
space must be equal to 2.0.

nscales : int

Number of scales in the coefficient list.
The maximum number of usable scales can be determined
by pywt.dwt_max_level. For more information see
the corresponding documentation of PyWavelets [http://www.pybytes.com/pywavelets/ref/dwt-discrete-wavelet-transform.html#maximum-decomposition-level-dwt-max-level] .

wbasis : {str, pywt.Wavelet}

If a string is given, converts to a pywt.Wavelet.
Describes properties of a selected wavelet basis.
See PyWavelet documentation [http://www.pybytes.com/pywavelets/ref/wavelets.html]

Possible wavelet families are:

Haar (haar)

Daubechies (db)

Symlets (sym)

Coiflets (coif)

Biorthogonal (bior)

Reverse biorthogonal (rbio)

Discrete FIR approximation of Meyer wavelet (dmey)

mode : str

Signal extention modes as defined by pywt.MODES.modes
http://www.pybytes.com/pywavelets/ref/signal-extension-modes.html

Possible extension modes are:

‘zpd’: zero-padding – signal is extended by adding zero samples

‘cpd’: constant padding – border values are replicated

‘sym’: symmetric padding – signal extension by mirroring samples

‘ppd’: periodic padding – signal is trated as a periodic one

‘sp1’: smooth padding – signal is extended according to the
first derivatives calculated on the edges (straight line)

‘per’: periodization – like periodic-padding but gives the
smallest possible number of decomposition coefficients.

Examples

>>> import odl, pywt
>>> wbasis = pywt.Wavelet('db1')
>>> discr_domain = odl.uniform_discr([0, 0], [1, 1], (16, 16))
>>> op = WaveletTransform(discr_domain, nscales=1,
... wbasis=wbasis, mode='per')
>>> op.is_biorthogonal
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform.adjoint

	
WaveletTransform.adjoint

	The adjoint wavelet transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform.domain

	
WaveletTransform.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform.inverse

	
WaveletTransform.inverse

	The inverse wavelet transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform.is_biorthogonal

	
WaveletTransform.is_biorthogonal

	Whether or not the wavelet basis is bi-orthogonal.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform.is_functional

	
WaveletTransform.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform.is_linear

	
WaveletTransform.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform.is_orthogonal

	
WaveletTransform.is_orthogonal

	Whether or not the wavelet basis is orthogonal.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform.range

	
WaveletTransform.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform.__call__

	
WaveletTransform.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform._call

	
WaveletTransform._call(x)

	Compute the discrete wavelet transform.

	Parameters:	x : DiscreteLpVector

	Returns:	arr : numpy.ndarray

Flattened and concatenated coefficient array
The length of the array depends on the size of input image to
be transformed and on the chosen wavelet basis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransform

WaveletTransform.derivative

	
WaveletTransform.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

WaveletTransformInverse

	
class odl.trafos.wavelet.WaveletTransformInverse(ran, nscales, wbasis, mode)

	Bases: odl.operator.operator.Operator

Discrete inverse wavelet trafo between discrete L2 spaces.

Attributes

	adjoint
	The adjoint wavelet transform.

	domain
	Set of objects on which this operator can be evaluated.

	inverse
	The inverse wavelet transform.

	is_biorthogonal
	Whether or not the wavelet basis is bi-orthogonal.

	is_functional
	True if the this operator’s range is a Field.

	is_linear
	True if this operator is linear.

	is_orthogonal
	Whether or not the wavelet basis is orthogonal.

	range
	Set in which the result of an evaluation of this operator lies.

Methods

	__call__(x[,out])
	Return self(x[, out, **kwargs]).

	__eq__
	Return self==value.

	_call(coeff)
	Compute the discrete 1D, 2D or 3D inverse wavelet transform.

	derivative(point)
	Return the operator derivative at point.

	
__init__(ran, nscales, wbasis, mode)

	Initialize a new instance.

	Parameters:	dom : DiscreteLp

Domain of the wavelet transform (the “image domain”).
The exponent [image: p] of the discrete [image: L^p]
space must be equal to 2.0.

nscales : int

Number of scales in the coefficient list.
The maximum number of usable scales can be determined
by pywt.dwt_max_level. For more information see
the corresponding documentation of PyWavelets [http://www.pybytes.com/pywavelets/ref/dwt-discrete-wavelet-transform.html#maximum-decomposition-level-dwt-max-level] .

wbasis : pywt.Wavelet

Describes properties of a selected wavelet basis.
See PyWavelet documentation [http://www.pybytes.com/pywavelets/ref/wavelets.html]

Possible wavelet families are:

Haar (haar)

Daubechies (db)

Symlets (sym)

Coiflets (coif)

Biorthogonal (bior)

Reverse biorthogonal (rbio)

Discrete FIR approximation of Meyer wavelet (dmey)

mode : str

Signal extention modes as defined by pywt.MODES.modes
http://www.pybytes.com/pywavelets/ref/signal-extension-modes.html

Possible extension modes are:

‘zpd’: zero-padding – signal is extended by adding zero samples

‘cpd’: constant padding – border values are replicated

‘sym’: symmetric padding – signal extension by mirroring samples

‘ppd’: periodic padding – signal is trated as a periodic one

‘sp1’: smooth padding – signal is extended according to the
first derivatives calculated on the edges (straight line)

‘per’: periodization – like periodic-padding but gives the
smallest possible number of decomposition coefficients.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse.adjoint

	
WaveletTransformInverse.adjoint

	The adjoint wavelet transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse.domain

	
WaveletTransformInverse.domain

	Set of objects on which this operator can be evaluated.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse.inverse

	
WaveletTransformInverse.inverse

	The inverse wavelet transform.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse.is_biorthogonal

	
WaveletTransformInverse.is_biorthogonal

	Whether or not the wavelet basis is bi-orthogonal.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse.is_functional

	
WaveletTransformInverse.is_functional

	True if the this operator’s range is a Field.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse.is_linear

	
WaveletTransformInverse.is_linear

	True if this operator is linear.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse.is_orthogonal

	
WaveletTransformInverse.is_orthogonal

	Whether or not the wavelet basis is orthogonal.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse.range

	
WaveletTransformInverse.range

	Set in which the result of an evaluation of this operator lies.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse.__call__

	
WaveletTransformInverse.__call__(x, out=None, **kwargs)

	Return self(x[, out, **kwargs]).

Implementation of the call pattern op(x) with the private
_call() method and added error checking.

	Parameters:	x : Operator.domain element-like

An object which can be converted into an element of this
operator’s domain with the self.domain.element method.
The operator is applied to this object, which is treated
as immutable, hence it is not modified during evaluation.

out : Operator.range element, optional

An object in the operator range to which the result of the
operator evaluation is written. The result is independent
of the initial state of this object.

kwargs : Further arguments to the function, optional

Passed on to the underlying implementation in _call

	Returns:	out : Operator.range element

Result of the operator evaluation. If out was provided,
the returned object is a reference to it.

See also

	_call

	Implementation of the method

Examples

>>> from odl import Rn, ScalingOperator
>>> rn = Rn(3)
>>> op = ScalingOperator(rn, 2.0)
>>> x = rn.element([1, 2, 3])

Out-of-place evaluation:

>>> op(x)
Rn(3).element([2.0, 4.0, 6.0])

In-place evaluation:

>>> y = rn.element()
>>> op(x, out=y)
Rn(3).element([2.0, 4.0, 6.0])
>>> y
Rn(3).element([2.0, 4.0, 6.0])

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse._call

	
WaveletTransformInverse._call(coeff)

	Compute the discrete 1D, 2D or 3D inverse wavelet transform.

	Parameters:	coeff : DiscreteLpVector

	Returns:	arr : DiscreteLpVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

 	WaveletTransformInverse

WaveletTransformInverse.derivative

	
WaveletTransformInverse.derivative(point)

	Return the operator derivative at point.

	Raises:	OpNotImplementedError

If the operator is not linear, the derivative cannot be
default implemented.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

array_to_pywt_coeff

	
odl.trafos.wavelet.array_to_pywt_coeff(coeff, size_list)

	Convert a flat array into a pywt [http://www.pybytes.com/pywavelets/] coefficient list.

For multilevel 1D, 2D and 3D discrete wavelet transforms.

	Parameters:	coeff : DiscreteLpVector

A flat coefficient vector containing the approximation,
and detail coefficients in the following order
[aaaN, aadN, adaN, addN, daaN, dadN, ddaN, dddN, ...
aad1, ada1, add1, daa1, dad1, dda1, ddd1]

size_list : list

A list of coefficient sizes such that,

	size_list[0] = size of approximation coefficients at the coarsest

	level,

size_list[1] = size of the detailedetails at the coarsest level,

	size_list[N] = size of the detailed coefficients at the finest

	level,

size_list[N+1] = size of original image,

N = the number of scaling levels

	Returns:	coeff : ordered list

Coefficient are organized in the list in the following way:

In 1D:

[aN, (dN), ... (d1)]

The abbreviations refer to

a = approximation,

d = detail,

In 2D:

[aaN, (adN, daN, ddN), ... (ad1, da1, dd1)]

The abbreviations refer to

aa = approx. on 1st dim, approx. on 2nd dim (approximation),

ad = approx. on 1st dim, detail on 2nd dim (horizontal),

da = detail on 1st dim, approx. on 2nd dim (vertical),

dd = detail on 1st dim, detail on 2nd dim (diagonal),

In 3D:

[aaaN, (aadN, adaN, addN, daaN, dadN, ddaN, dddN), ...
(aad1, ada1, add1, daa1, dad1, dda1, ddd1)]

The abbreviations refer to

aaa = approx. on 1st dim, approx. on 2nd dim, approx. on 3rd dim,

aad = approx. on 1st dim, approx. on 2nd dim, detail on 3rd dim,

ada = approx. on 1st dim, detail on 3nd dim, approx. on 3rd dim,

add = approx. on 1st dim, detail on 3nd dim, detail on 3rd dim,

daa = detail on 1st dim, approx. on 2nd dim, approx. on 3rd dim,

dad = detail on 1st dim, approx. on 2nd dim, detail on 3rd dim,

dda = detail on 1st dim, detail on 2nd dim, approx. on 3rd dim,

ddd = detail on 1st dim, detail on 2nd dim, detail on 3rd dim,

N refers to the number of scaling levels

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

coeff_size_list

	
odl.trafos.wavelet.coeff_size_list(shape, nscales, wbasis, mode)

	Construct a size list from given wavelet coefficients.

Related to 1D, 2D and 3D multidimensional wavelet transforms that utilize
PyWavelets [http://www.pybytes.com/pywavelets/].

	Parameters:	shape : tuple

Number of pixels/voxels in the image. Its length must be 1, 2 or 3.

nscales : int

Number of scales in the multidimensional wavelet
transform. This parameter is checked against the maximum number of
scales returned by pywt.dwt_max_level. For more information
see the PyWavelets documentation on the maximum level of scales [http://www.pybytes.com/pywavelets/ref/dwt-discrete-wavelet-transform.html#maximum-decomposition-level-dwt-max-level].

wbasis : pywt.Wavelet

Selected wavelet basis. For more information see the
PyWavelets documentation on wavelet bases [http://www.pybytes.com/pywavelets/ref/wavelets.html].

mode : str

Signal extention mode. Possible extension modes are

‘zpd’: zero-padding – signal is extended by adding zero samples

‘cpd’: constant padding – border values are replicated

‘sym’: symmetric padding – signal extension by mirroring samples

‘ppd’: periodic padding – signal is trated as a periodic one

‘sp1’: smooth padding – signal is extended according to the
first derivatives calculated on the edges (straight line)

‘per’: periodization – like periodic-padding but gives the
smallest possible number of decomposition coefficients.

	Returns:	size_list : list

A list containing the sizes of the wavelet (approximation
and detail) coefficients at different scaling levels:

size_list[0] = size of approximation coefficients at
the coarsest level

size_list[1] = size of the detail coefficients at the
coarsest level

...

size_list[N] = size of the detail coefficients at the
finest level

size_list[N+1] = size of the original image

N = number of scaling levels = nscales

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

pywt_coeff_to_array

	
odl.trafos.wavelet.pywt_coeff_to_array(coeff, size_list)

	Convert a Pywavelets coefficient list into a flat array.

Related to 1D, 2D and 3D multilevel discrete wavelet transforms.

	Parameters:	coeff : ordered list

Coefficient are organized in the list in the following way:

In 1D:

[aN, (dN), ..., (d1)]

The abbreviations refer to

a = approximation,

d = detail

In 2D:

[aaN, (adN, daN, ddN), ..., (ad1, da1, dd1)]

The abbreviations refer to

aa = approx. on 1st dim, approx. on 2nd dim (approximation),

ad = approx. on 1st dim, detail on 2nd dim (horizontal),

da = detail on 1st dim, approx. on 2nd dim (vertical),

dd = detail on 1st dim, detail on 2nd dim (diagonal),

In 3D:

[aaaN, (aadN, adaN, addN, daaN, dadN, ddaN, dddN), ...
(aad1, ada1, add1, daa1, dad1, dda1, ddd1)]

The abbreviations refer to

aaa = approx. on 1st dim, approx. on 2nd dim, approx. on 3rd dim,

aad = approx. on 1st dim, approx. on 2nd dim, detail on 3rd dim,

ada = approx. on 1st dim, detail on 3nd dim, approx. on 3rd dim,

add = approx. on 1st dim, detail on 3nd dim, detail on 3rd dim,

daa = detail on 1st dim, approx. on 2nd dim, approx. on 3rd dim,

dad = detail on 1st dim, approx. on 2nd dim, detail on 3rd dim,

dda = detail on 1st dim, detail on 2nd dim, approx. on 3rd dim,

ddd = detail on 1st dim, detail on 2nd dim, detail on 3rd dim,

N refers to the number of scaling levels

size_list : list

A list containing the sizes of the wavelet (approximation
and detail) coefficients at different scaling levels.

size_list[0] = size of approximation coefficients at
the coarsest level,

size_list[1] = size of the detailed coefficients at
the coarsest level,

size_list[N] = size of the detailed coefficients at
the finest level,

size_list[N+1] = size of original image,

N = the number of scaling levels

	Returns:	arr : numpy.ndarray

Flattened and concatenated coefficient array
The length of the array depends on the size of input image to
be transformed and on the chosen wavelet basis.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

wavelet_decomposition3d

	
odl.trafos.wavelet.wavelet_decomposition3d(x, wbasis, mode, nscales)

	Discrete 3D multiresolution wavelet decomposition.

Compute the discrete 3D multiresolution wavelet decomposition
at the given level (nscales) for a given 3D image.
Utilizes a n-dimensional PyWavelet [http://www.pybytes.com/pywavelets/ref/other-functions.html]
function pywt.dwtn.

	Parameters:	x : DiscreteLpVector

wbasis : pywt.Wavelet

Selected wavelet basis. For more information see the
PyWavelets documentation on wavelet bases [http://www.pybytes.com/pywavelets/ref/wavelets.html].

mode : str

Signal extention mode. For possible extensions see the
Pywavelets documentation on signal extenstion modes [http://www.pybytes.com/pywavelets/ref/signal-extension-modes.html].

nscales : int

Number of scales in the coefficient list.

	Returns:	coeff_list : list

	A list of coefficient organized in the following way

	`[aaaN, (aadN, adaN, addN, daaN, dadN, ddaN, dddN), ...
(aad1, ada1, add1, daa1, dad1, dda1, ddd1)]` .

The abbreviations refer to

aaa = approx. on 1st dim, approx. on 2nd dim, approx. on 3rd dim,

aad = approx. on 1st dim, approx. on 2nd dim, detail on 3rd dim,

ada = approx. on 1st dim, detail on 3nd dim, approx. on 3rd dim,

add = approx. on 1st dim, detail on 3nd dim, detail on 3rd dim,

daa = detail on 1st dim, approx. on 2nd dim, approx. on 3rd dim,

dad = detail on 1st dim, approx. on 2nd dim, detail on 3rd dim,

dda = detail on 1st dim, detail on 2nd dim, approx. on 3rd dim,

ddd = detail on 1st dim, detail on 2nd dim, detail on 3rd dim,

N = the number of scaling levels

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	trafos

 	wavelet

wavelet_reconstruction3d

	
odl.trafos.wavelet.wavelet_reconstruction3d(coeff_list, wbasis, mode, nscales)

	Discrete 3D multiresolution wavelet reconstruction

Compute a discrete 3D multiresolution wavelet reconstruction
from a given wavelet coefficient list.
Utilizes a PyWavelet [http://www.pybytes.com/pywavelets/ref/other-functions.html]
function pywt.dwtn

	Parameters:	coeff_list : list

A list of wavelet approximation and detail coefficients
organized in the following way
`[caaaN, (aadN, adaN, addN, daaN, dadN, ddaN, dddN), ...
(aad1, ada1, add1, daa1, dad1, dda1, ddd1)]`.

The abbreviations refer to

aaa = approx. on 1st dim, approx. on 2nd dim, approx. on 3rd dim,

aad = approx. on 1st dim, approx. on 2nd dim, detail on3rd dim,

ada = approx. on 1st dim, detail on 3nd dim, approx. on 3rd dim,

add = approx. on 1st dim, detail on 3nd dim, detail on 3rd dim,

daa = detail on 1st dim, approx. on 2nd dim, approx. on 3rd dim,

dad = detail on 1st dim, approx. on 2nd dim, detail on 3rd dim,

dda = detail on 1st dim, detail on 2nd dim, approx. on 3rd dim,

ddd = detail on 1st dim, detail on 2nd dim, detail on 3rd dim,

N = the number of scaling levels

wbasis : _pywt.Wavelet

Describes properties of a selected wavelet basis.
For more information see PyWavelet documentation [http://www.pybytes.com/pywavelets/ref/wavelets.html]

mode : str

Signal extention mode. For possible extensions see the
signal extenstion modes [http://www.pybytes.com/pywavelets/ref/signal-extension-modes.html]
of PyWavelets.

nscales : int

Number of scales in the coefficient list.

	Returns:	x : numpy.ndarray.

A wavalet reconstruction.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

util

Utility library for ODL, only for internal use.

Modules

	graphics
	show_discrete_data

	numerics
	apply_on_boundary

	fast_1d_tensor_mult

	phantom
	cuboid

	derenzo_sources

	ellipse_phantom_2d

	ellipse_phantom_3d

	indicate_proj_axis

	phantom

	shepp_logan

	submarine_phantom

	testutils
	FailCounter

	ProgressBar

	ProgressRange

	Timer

	all_almost_equal

	all_almost_equal_array

	all_equal

	almost_equal

	is_subdict

	skip_if_no_benchmark

	skip_if_no_cuda

	skip_if_no_largescale

	skip_if_no_pyfftw

	skip_if_no_pywavelets

	timeit

	ufuncs
	Notes

	utility
	array1d_repr

	array1d_str

	arraynd_repr

	arraynd_str

	conj_exponent

	dtype_repr

	is_complex_floating_dtype

	is_floating_dtype

	is_int_dtype

	is_real_dtype

	is_real_floating_dtype

	is_scalar_dtype

	preload_first_arg

	with_metaclass

	vectorization
	OptionalArgDecorator

	vectorize

	is_valid_input_array

	is_valid_input_meshgrid

	out_shape_from_array

	out_shape_from_meshgrid

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

graphics

Functions for graphical output.

Functions

	show_discrete_data(values,grid[,title,...])
	Display a discrete 1d or 2d function.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	graphics

show_discrete_data

	
odl.util.graphics.show_discrete_data(values, grid, title=None, method='', show=False, fig=None, **kwargs)

	Display a discrete 1d or 2d function.

	Parameters:	values : numpy.ndarray

The values to visualize

grid : RegularGrid

Grid of the values

title : str, optional

Set the title of the figure

method : str, optional

1d methods:

‘plot’ : graph plot

‘scatter’ : scattered 2d points
(2nd axis <-> value)

2d methods:

‘imshow’ : image plot with coloring according to value,
including a colorbar.

‘scatter’ : cloud of scattered 3d points
(3rd axis <-> value)

‘wireframe’, ‘plot_wireframe’ : surface plot

show : bool, optional

If the plot should be showed now or deferred until later

fig : matplotlib.figure.Figure

The figure to show in. Expected to be of same “style”, as the figure
given by this function. The most common usecase is that fig is the
return value from an earlier call to this function.

interp : {‘nearest’, ‘linear’}

Interpolation method to use.

axis_labels : str

Axis labels, default: [‘x’, ‘y’]

kwargs : {‘figsize’, ‘saveto’, ...}

Extra keyword arguments passed on to display method
See the Matplotlib functions for documentation of extra
options.

	Returns:	fig : matplotlib.figure.Figure

The resulting figure. It is also shown to the user.

colorbar : matplotlib.colorbar.Colorbar

The colorbar

See also

	matplotlib.pyplot.plot

	Show graph plot

	matplotlib.pyplot.imshow

	Show data as image

	matplotlib.pyplot.scatter

	Show scattered 3d points

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

numerics

Numerical helper functions for convenience or speed.

Functions

	apply_on_boundary(array,func[,only_once,...])
	Apply a function of the boundary of an n-dimensional array.

	fast_1d_tensor_mult(ndarr,onedim_arrs[,...])
	Fast multiplication of an n-dim array with an outer product.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	numerics

apply_on_boundary

	
odl.util.numerics.apply_on_boundary(array, func, only_once=True, which_boundaries=None, axis_order=None, out=None)

	Apply a function of the boundary of an n-dimensional array.

All other values are preserved as is.

	Parameters:	array : array-like

Modify the boundary of this array

func : callable or sequence

If a single function is given, assign
array[slice] = func(array[slice]) on the boundary slices,
e.g. use lamda x: x / 2 to divide values by 2.
A sequence of functions is applied per axis separately. It
must have length array.ndim and may consist of one function
or a 2-tuple of functions per axis.
None entries in a sequence cause the axis (side) to be
skipped.

only_once : bool, optional

If True, ensure that each boundary point appears in exactly
one slice. If func is a list of functions, the
axis_order determines which functions are applied to nodes
which appear in multiple slices, according to the principle
“first-come, first-served”.

which_boundaries : sequence, optional

If provided, this sequence determines per axis whether to
apply the function at the boundaries in each axis. The entry
in each axis may consist in a single bool or a 2-tuple of
bool. In the latter case, the first tuple entry decides for
the left, the second for the right boundary. The length of the
sequence must be array.ndim. None is interpreted as
‘all boundaries’.

axis_order : sequence of int, optional

Permutation of range(array.ndim) defining the order in which
to process the axes. If combined with only_once and a
function list, this determines which function is evaluated in
the points that are potentially processed multiple times.

out : numpy.ndarray, optional

Location in which to store the result, can be the same as array.
Default: copy of array

Examples

>>> import numpy as np
>>> arr = np.ones((3, 3))
>>> apply_on_boundary(arr, lambda x: x / 2)
array([[0.5, 0.5, 0.5],
 [0.5, 1. , 0.5],
 [0.5, 0.5, 0.5]])

If called with only_once=False, applies function repeatedly

>>> apply_on_boundary(arr, lambda x: x / 2, only_once=False)
array([[0.25, 0.5 , 0.25],
 [0.5 , 1. , 0.5],
 [0.25, 0.5 , 0.25]])

>>> apply_on_boundary(arr, lambda x: x / 2, only_once=True,
... which_boundaries=((True, False), True))
array([[0.5, 0.5, 0.5],
 [0.5, 1. , 0.5],
 [0.5, 1. , 0.5]])

Also accepts out parameter:

>>> out = np.empty_like(arr)
>>> result = apply_on_boundary(arr, lambda x: x / 2, out=out)
>>> result
array([[0.5, 0.5, 0.5],
 [0.5, 1. , 0.5],
 [0.5, 0.5, 0.5]])
>>> result is out
True

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	numerics

fast_1d_tensor_mult

	
odl.util.numerics.fast_1d_tensor_mult(ndarr, onedim_arrs, axes=None, out=None)

	Fast multiplication of an n-dim array with an outer product.

This method implements the multiplication of an n-dimensional array
with an outer product of one-dimensional arrays, e.g.:

a = np.ones((10, 10, 10))
x = np.random.rand(10)
a *= x[:, None, None] * x[None, :, None] * x[None, None, :]

Basically, there are two ways to do such an operation:

	First calculate the factor on the right-hand side and do one
“big” multiplication; or

	Multiply by one factor at a time.

The procedure of building up the large factor in the first method
is relatively cheap if the number of 1d arrays is smaller than the
number of dimensions. For exactly n vectors, the second method is
faster, although it loops of the array a n times.

This implementation combines the two ideas into a hybrid scheme:

	If there are less 1d arrays than dimensions, choose 1.

	Otherwise, calculate the factor array for n-1 arrays
and multiply it to the large array. Finally, multiply with the
last 1d array.

The advantage of this approach is that it is memory-friendly and
loops over the big array only twice.

	Parameters:	ndarr : array-like

Array to multiply to

onedim_arrs : sequence of array-like

One-dimensional arrays to be multiplied with ndarr. The
sequence may not be longer than ndarr.ndim.

axes : sequence of int, optional

Take the 1d transform along these axes. None corresponds to
the last len(onedim_arrs) axes, in ascending order.

out : numpy.ndarray, optional

Array in which the result is stored

	Returns:	out : numpy.ndarray

Result of the modification. If out was given, the returned
object is a reference to it.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

phantom

Some useful phantoms, mostly for tomography tests.

Functions

	cuboid(discr_space,begin,end)
	Rectangular cuboid.

	derenzo_sources(space)
	Create the PET/SPECT Derenzo sources phantom.

	ellipse_phantom_2d(space,ellipses)
	Create an ellipse phantom in 2d space.

	ellipse_phantom_3d(space,ellipses)
	Create an ellipse phantom in 3d space.

	indicate_proj_axis(discr_space[,...])
	Phantom indicating along which axis it is projected.

	phantom(space,ellipses)
	Return a phantom given by ellipses.

	shepp_logan(space[,modified])
	Create a Shepp-Logan phantom.

	submarine_phantom(discr[,smooth,taper])
	Return a ‘submarine’ phantom consisting in an ellipsoid and a box.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	phantom

cuboid

	
odl.util.phantom.cuboid(discr_space, begin, end)

	Rectangular cuboid.

	Parameters:	discr_space : Discretization

Discretized space in which the phantom is supposed to be created

begin : array-like or float in [0, 1]

The lower left corner of the cuboid within the space grid relative
to the extend of the grid

end : array-like or float in [0, 1]

The upper right corner of the cuboid within the space grid relative
to the extend of the grid

	Returns:	phantom : LinearSpaceVector

Returns an element in discr_space

Examples

>>> import odl
>>> space = odl.uniform_discr(0, 1, 6, dtype='float32')
>>> print(cuboid(space, 0.5, 1))
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0]
>>> space = odl.uniform_discr([0, 0], [1, 1], [4, 6], dtype='float32')
>>> print(cuboid(space, [0.25, 0], [0.75, 0.5]))
[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
 [1.0, 1.0, 1.0, 0.0, 0.0, 0.0],
 [1.0, 1.0, 1.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	phantom

derenzo_sources

	
odl.util.phantom.derenzo_sources(space)

	Create the PET/SPECT Derenzo sources phantom.

The Derenzo phantom contains a series of circles of decreasing size.

In 3d the phantom is simply the 2d phantom extended in the z direction as
cylinders.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	phantom

ellipse_phantom_2d

	
odl.util.phantom.ellipse_phantom_2d(space, ellipses)

	Create an ellipse phantom in 2d space.

	Parameters:	space : DiscreteLp

The space the phantom should be generated in.

ellipses : list of lists

Each row should contain:
‘value’, ‘axis_1’, ‘axis_2’, ‘center_x’, ‘center_y’, ‘rotation’
The ellipses should be contained the he rectangle [-1, -1] x [1, 1].

	Returns:	phantom : DiscreteLpVector

The phantom

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	phantom

ellipse_phantom_3d

	
odl.util.phantom.ellipse_phantom_3d(space, ellipses)

	Create an ellipse phantom in 3d space.

	Parameters:	space : DiscreteLp

The space the phantom should be generated in.

ellipses : list of lists

Each row should contain:
‘value’, ‘axis_1’, ‘axis_2’, ‘axis_2’,
‘center_x’, ‘center_y’, ‘center_z’,
‘rotation_phi’, ‘rotation_theta’, ‘rotation_psi’
The ellipses should be contained the he rectangle
[-1, -1, -1] x [1, 1, 1].

	Returns:	phantom : DiscreteLpVector

The phantom

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	phantom

indicate_proj_axis

	
odl.util.phantom.indicate_proj_axis(discr_space, scale_structures=0.5)

	Phantom indicating along which axis it is projected.

The number (n) of rectangles in a parallel-beam projection along a main
axis (0, 1, or 2) indicates the projection to be along the (n-1)the
dimension.

	Parameters:	discr_space : Discretization

Discretized space in which the phantom is supposed to be created

scale_structures : positive float in (0, 1]

Scales objects (cube, cuboids)

	Returns:	phantom : LinearSpaceVector

Returns an element in discr_space

Examples

>>> import odl
>>> space = odl.uniform_discr([0] * 3, [1] * 3, [8, 8, 8])
>>> phan = indicate_proj_axis(space).asarray()
>>> print(np.sum(phan, 0))
[[0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 3. 3. 0. 0. 0.]
 [0. 0. 0. 3. 3. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]]
>>> print(np.sum(phan, 1))
[[0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 2. 2. 0. 0. 0.]
 [0. 0. 0. 2. 2. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 1. 0. 0. 0.]
 [0. 0. 0. 1. 1. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]]
>>> print(np.sum(phan, 2))
[[0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 2. 2. 0. 0. 0.]
 [0. 0. 0. 2. 2. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 2. 0. 0. 0.]
 [0. 0. 0. 2. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0.]]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	phantom

phantom

	
odl.util.phantom.phantom(space, ellipses)

	Return a phantom given by ellipses.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	phantom

shepp_logan

	
odl.util.phantom.shepp_logan(space, modified=False)

	Create a Shepp-Logan phantom.

The standard Shepp-Logan phantom in 2 or 3 dimensions.

References

Wikipedia : https://en.wikipedia.org/wiki/Shepp%E2%80%93Logan_phantom

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	phantom

submarine_phantom

	
odl.util.phantom.submarine_phantom(discr, smooth=True, taper=20.0)

	Return a ‘submarine’ phantom consisting in an ellipsoid and a box.

This phantom is used in [Okt2015] for shape-based reconstruction.

	Parameters:	discr : DiscreteLp

Discretized space in which the phantom is supposed to be created

smooth : bool, optional

If True, the boundaries are smoothed out. Otherwise, the
function steps from 0 to 1 at the boundaries.

taper : float, optional

Tapering parameter for the boundary smoothing. Larger values
mean faster taper, i.e. sharper boundaries.

	Returns:	phantom : DiscreteLpVector

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

testutils

Utilities for internal use.

Classes

	FailCounter([err_msg])
	Used to count the number of failures of something

	ProgressBar([text])
	A simple command-line progress bar.

	ProgressRange(text,n)
	Simple range sequence with progress bar output.

	Timer([name])
	A timer context manager.

Functions

	all_almost_equal(iter1,iter2[,places])
	True if all elements in a and b are almost equal.

	all_almost_equal_array(v1,v2,places)
	

	all_equal(iter1,iter2)
	True if all elements in a and b are equal.

	almost_equal(a,b[,places])
	True if scalars a and b are almost equal.

	is_subdict(subdict,dictionary)
	True if all items of subdict are in dictionary.

	skip_if_no_benchmark(function)
	Trivial decorator used if pytest marks are not available.

	skip_if_no_cuda(function)
	Trivial decorator used if pytest marks are not available.

	skip_if_no_largescale(function)
	Trivial decorator used if pytest marks are not available.

	skip_if_no_pyfftw(function)
	Trivial decorator used if pytest marks are not available.

	skip_if_no_pywavelets(function)
	Trivial decorator used if pytest marks are not available.

	timeit(arg)
	A timer decorator.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	testutils

FailCounter

	
class odl.util.testutils.FailCounter(err_msg=None)

	Bases: object

Used to count the number of failures of something

Useage:

with FailCounter() as counter:
 # Do stuff

 counter.fail()

When done, it prints

*** FAILED 1 TEST CASE(S) ***

Methods

	__eq__
	Return self==value.

	fail([string])
	Add failure with reason as string.

	
__init__(err_msg=None)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	util

 	testutils

 	FailCounter

FailCounter.fail

	
FailCounter.fail(string=None)

	Add failure with reason as string.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	testutils

ProgressBar

	
class odl.util.testutils.ProgressBar(text='progress', *njobs)

	Bases: object

A simple command-line progress bar.

Usage:

>>> progress = ProgressBar('Reading data', 10)

	Reading data: [] Starting

	>>> progress.update(4) #halfway, zero indexing

Reading data: [###############] 50.0%

Multi-indices, from slowest to fastest:

>>> progress = ProgressBar('Reading data', 10, 10)

	Reading data: [] Starting

	>>> progress.update(9, 8)

Reading data: [#############################] 99.0%

Supports simply calling update, which moves the counter forward:

>>> progress = ProgressBar('Reading data', 10, 10)

	Reading data: [] Starting

	>>> progress.update()

Reading data: [] 1.0%

Methods

	__eq__
	Return self==value.

	start()
	Print the initial bar.

	update(*indices)
	Update the bar according to indices.

	
__init__(text='progress', *njobs)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	util

 	testutils

 	ProgressBar

ProgressBar.start

	
ProgressBar.start()

	Print the initial bar.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

 	ProgressBar

ProgressBar.update

	
ProgressBar.update(*indices)

	Update the bar according to indices.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	testutils

ProgressRange

	
class odl.util.testutils.ProgressRange(text, n)

	Bases: object

Simple range sequence with progress bar output.

Methods

	__eq__
	Return self==value.

	
__init__(text, n)

	Initialize a new instance.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	odl

 	odl

 	util

 	testutils

Timer

	
class odl.util.testutils.Timer(name=None)

	Bases: object

A timer context manager.

Usage:

with Timer('name'):
 # Do stuff

Prints the time stuff took to execute.

Methods

	__eq__
	Return self==value.

	
__init__(name=None)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	util

 	testutils

all_almost_equal

	
odl.util.testutils.all_almost_equal(iter1, iter2, places=None)

	True if all elements in a and b are almost equal.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

all_almost_equal_array

	
odl.util.testutils.all_almost_equal_array(v1, v2, places)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

all_equal

	
odl.util.testutils.all_equal(iter1, iter2)

	True if all elements in a and b are equal.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

almost_equal

	
odl.util.testutils.almost_equal(a, b, places=None)

	True if scalars a and b are almost equal.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

is_subdict

	
odl.util.testutils.is_subdict(subdict, dictionary)

	True if all items of subdict are in dictionary.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

skip_if_no_benchmark

	
odl.util.testutils.skip_if_no_benchmark(function)

	Trivial decorator used if pytest marks are not available.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

skip_if_no_cuda

	
odl.util.testutils.skip_if_no_cuda(function)

	Trivial decorator used if pytest marks are not available.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

skip_if_no_largescale

	
odl.util.testutils.skip_if_no_largescale(function)

	Trivial decorator used if pytest marks are not available.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

skip_if_no_pyfftw

	
odl.util.testutils.skip_if_no_pyfftw(function)

	Trivial decorator used if pytest marks are not available.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

skip_if_no_pywavelets

	
odl.util.testutils.skip_if_no_pywavelets(function)

	Trivial decorator used if pytest marks are not available.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	testutils

timeit

	
odl.util.testutils.timeit(arg)

	A timer decorator.

Usage:

@timeit
def myfunction(...):
 ...

@timeit('info string')
def myfunction(...):
 ...

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

ufuncs

UFuncs for ODL vectors.

These functions are internal and should only be used as methods on
NtuplesBaseVector type spaces.

See numpy.ufuncs [http://docs.scipy.org/doc/numpy/reference/ufuncs.html]
for more information.

Notes

The default implementation of these methods make heavy use of the
NtuplesBaseVector.__array__ to extract a numpy.ndarray from the vector,
and then apply a ufunc to it. Afterwards, NtuplesBaseVector.__array_wrap__
is used to re-wrap the data into the appropriate space.

Classes

	CudaNtuplesUFuncs(vector)
	UFuncs for CudaNtuplesVector objects.

	DiscreteLpUFuncs(vector)
	UFuncs for DiscreteLpVector objects.

	NtuplesBaseUFuncs(vector)
	UFuncs for NtuplesBaseVector objects.

	NtuplesUFuncs(vector)
	UFuncs for NtuplesVector objects.

	ProductSpaceUFuncs(vector)
	UFuncs for ProductSpaceVector objects.

Functions

	method(self)
	Maximum value in array.

	wrap_reduction_base(name,doc)
	Add ufunc methods to NtuplesBaseUFuncs.

	wrap_reduction_discretelp(name,doc)
	

	wrap_reduction_productspace(name,doc)
	Add reduction methods to ProductSpaceVector.

	wrap_ufunc_base(name,n_in,n_out,doc)
	Add ufunc methods to NtuplesBaseUFuncs.

	wrap_ufunc_discretelp(name,n_in,n_out,doc)
	Add ufunc methods to DiscreteLpUFuncs.

	wrap_ufunc_ntuples(name,n_in,n_out,doc)
	Add ufunc methods to NtuplesUFuncs.

	wrap_ufunc_productspace(name,n_in,n_out,doc)
	Add ufunc methods to ProductSpaceVector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

CudaNtuplesUFuncs

	
class odl.util.ufuncs.CudaNtuplesUFuncs(vector)

	Bases: odl.util.ufuncs.NtuplesBaseUFuncs

UFuncs for CudaNtuplesVector objects.

Internal object, should not be created except in CudaNtuplesVector.

Methods

	__eq__
	Return self==value.

	absolute([out])
	Calculate the absolute value element-wise.

	add(x2[,out])
	Add arguments element-wise.

	arccos([out])
	Trigonometric inverse cosine, element-wise.

	arccosh([out])
	Inverse hyperbolic cosine, element-wise.

	arcsin([out])
	Inverse sine, element-wise.

	arcsinh([out])
	Inverse hyperbolic sine element-wise.

	arctan([out])
	Trigonometric inverse tangent, element-wise.

	arctan2(x2[,out])
	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

	arctanh([out])
	Inverse hyperbolic tangent element-wise.

	bitwise_and(x2[,out])
	Compute the bit-wise AND of two arrays element-wise.

	bitwise_or(x2[,out])
	Compute the bit-wise OR of two arrays element-wise.

	bitwise_xor(x2[,out])
	Compute the bit-wise XOR of two arrays element-wise.

	ceil([out])
	Return the ceiling of the input, element-wise.

	conj([out])
	Return the complex conjugate, element-wise.

	copysign(x2[,out])
	Change the sign of x1 to that of x2, element-wise.

	cos([out])
	Cosine element-wise.

	cosh([out])
	Hyperbolic cosine, element-wise.

	deg2rad([out])
	Convert angles from degrees to radians.

	divide(x2[,out])
	Returns a true division of the inputs, element-wise.

	equal(x2[,out])
	Return (x1 == x2) element-wise.

	exp([out])
	Calculate the exponential of all elements in the input array.

	exp2([out])
	Calculate 2**p for all p in the input array.

	expm1([out])
	Calculate exp(x) - 1 for all elements in the array.

	floor([out])
	Return the floor of the input, element-wise.

	floor_divide(x2[,out])
	Return the largest integer smaller or equal to the division of the

	fmax(x2[,out])
	Element-wise maximum of array elements.

	fmin(x2[,out])
	Element-wise minimum of array elements.

	fmod(x2[,out])
	Return the element-wise remainder of division.

	greater(x2[,out])
	Return the truth value of (x1 > x2) element-wise.

	greater_equal(x2[,out])
	Return the truth value of (x1 >= x2) element-wise.

	hypot(x2[,out])
	Given the “legs” of a right triangle, return its hypotenuse.

	invert([out])
	Compute bit-wise inversion, or bit-wise NOT, element-wise.

	isfinite([out])
	Test element-wise for finiteness (not infinity or not Not a Number).

	isinf([out])
	Test element-wise for positive or negative infinity.

	isnan([out])
	Test element-wise for NaN and return result as a boolean array.

	left_shift(x2[,out])
	Shift the bits of an integer to the left.

	less(x2[,out])
	Return the truth value of (x1 < x2) element-wise.

	less_equal(x2[,out])
	Return the truth value of (x1 =< x2) element-wise.

	log([out])
	Natural logarithm, element-wise.

	log10([out])
	Return the base 10 logarithm of the input array, element-wise.

	log1p([out])
	Return the natural logarithm of one plus the input array, element-wise.

	log2([out])
	Base-2 logarithm of x.

	logaddexp(x2[,out])
	Logarithm of the sum of exponentiations of the inputs.

	logaddexp2(x2[,out])
	Logarithm of the sum of exponentiations of the inputs in base-2.

	logical_and(x2[,out])
	Compute the truth value of x1 AND x2 element-wise.

	logical_not([out])
	Compute the truth value of NOT x element-wise.

	logical_or(x2[,out])
	Compute the truth value of x1 OR x2 element-wise.

	logical_xor(x2[,out])
	Compute the truth value of x1 XOR x2, element-wise.

	max()
	Maximum value in array.

	maximum(x2[,out])
	Element-wise maximum of array elements.

	min()
	Minimum value in array.

	minimum(x2[,out])
	Element-wise minimum of array elements.

	mod(x2[,out])
	Return element-wise remainder of division.

	modf([out1,out2])
	Return the fractional and integral parts of an array, element-wise.

	multiply(x2[,out])
	Multiply arguments element-wise.

	negative([out])
	Numerical negative, element-wise.

	not_equal(x2[,out])
	Return (x1 != x2) element-wise.

	power(x2[,out])
	First array elements raised to powers from second array, element-wise.

	prod()
	Product of array elements.

	rad2deg([out])
	Convert angles from radians to degrees.

	reciprocal([out])
	Return the reciprocal of the argument, element-wise.

	remainder(x2[,out])
	Return element-wise remainder of division.

	right_shift(x2[,out])
	Shift the bits of an integer to the right.

	rint([out])
	Round elements of the array to the nearest integer.

	sign([out])
	Returns an element-wise indication of the sign of a number.

	signbit([out])
	Returns element-wise True where signbit is set (less than zero).

	sin([out])
	Trigonometric sine, element-wise.

	sinh([out])
	Hyperbolic sine, element-wise.

	sqrt([out])
	Return the positive square-root of an array, element-wise.

	square([out])
	Return the element-wise square of the input.

	subtract(x2[,out])
	Subtract arguments, element-wise.

	sum()
	Sum of array elements.

	tan([out])
	Compute tangent element-wise.

	tanh([out])
	Compute hyperbolic tangent element-wise.

	true_divide(x2[,out])
	Returns a true division of the inputs, element-wise.

	trunc([out])
	Return the truncated value of the input, element-wise.

	
__init__(vector)

	Create ufunc wrapper for vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.absolute

	
CudaNtuplesUFuncs.absolute(out=None)

	Calculate the absolute value element-wise.

See also

numpy.absolute

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.add

	
CudaNtuplesUFuncs.add(x2, out=None)

	Add arguments element-wise.

See also

numpy.add

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.arccos

	
CudaNtuplesUFuncs.arccos(out=None)

	Trigonometric inverse cosine, element-wise.

See also

numpy.arccos

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.arccosh

	
CudaNtuplesUFuncs.arccosh(out=None)

	Inverse hyperbolic cosine, element-wise.

See also

numpy.arccosh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.arcsin

	
CudaNtuplesUFuncs.arcsin(out=None)

	Inverse sine, element-wise.

See also

numpy.arcsin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.arcsinh

	
CudaNtuplesUFuncs.arcsinh(out=None)

	Inverse hyperbolic sine element-wise.

See also

numpy.arcsinh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.arctan

	
CudaNtuplesUFuncs.arctan(out=None)

	Trigonometric inverse tangent, element-wise.

See also

numpy.arctan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.arctan2

	
CudaNtuplesUFuncs.arctan2(x2, out=None)

	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

See also

numpy.arctan2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.arctanh

	
CudaNtuplesUFuncs.arctanh(out=None)

	Inverse hyperbolic tangent element-wise.

See also

numpy.arctanh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.bitwise_and

	
CudaNtuplesUFuncs.bitwise_and(x2, out=None)

	Compute the bit-wise AND of two arrays element-wise.

See also

numpy.bitwise_and

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.bitwise_or

	
CudaNtuplesUFuncs.bitwise_or(x2, out=None)

	Compute the bit-wise OR of two arrays element-wise.

See also

numpy.bitwise_or

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.bitwise_xor

	
CudaNtuplesUFuncs.bitwise_xor(x2, out=None)

	Compute the bit-wise XOR of two arrays element-wise.

See also

numpy.bitwise_xor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.ceil

	
CudaNtuplesUFuncs.ceil(out=None)

	Return the ceiling of the input, element-wise.

See also

numpy.ceil

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.conj

	
CudaNtuplesUFuncs.conj(out=None)

	Return the complex conjugate, element-wise.

See also

numpy.conj

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.copysign

	
CudaNtuplesUFuncs.copysign(x2, out=None)

	Change the sign of x1 to that of x2, element-wise.

See also

numpy.copysign

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.cos

	
CudaNtuplesUFuncs.cos(out=None)

	Cosine element-wise.

See also

numpy.cos

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.cosh

	
CudaNtuplesUFuncs.cosh(out=None)

	Hyperbolic cosine, element-wise.

See also

numpy.cosh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.deg2rad

	
CudaNtuplesUFuncs.deg2rad(out=None)

	Convert angles from degrees to radians.

See also

numpy.deg2rad

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.divide

	
CudaNtuplesUFuncs.divide(x2, out=None)

	Returns a true division of the inputs, element-wise.

See also

numpy.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.equal

	
CudaNtuplesUFuncs.equal(x2, out=None)

	Return (x1 == x2) element-wise.

See also

numpy.equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.exp

	
CudaNtuplesUFuncs.exp(out=None)

	Calculate the exponential of all elements in the input array.

See also

numpy.exp

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.exp2

	
CudaNtuplesUFuncs.exp2(out=None)

	Calculate 2**p for all p in the input array.

See also

numpy.exp2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.expm1

	
CudaNtuplesUFuncs.expm1(out=None)

	Calculate exp(x) - 1 for all elements in the array.

See also

numpy.expm1

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.floor

	
CudaNtuplesUFuncs.floor(out=None)

	Return the floor of the input, element-wise.

See also

numpy.floor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.floor_divide

	
CudaNtuplesUFuncs.floor_divide(x2, out=None)

	Return the largest integer smaller or equal to the division of the

See also

numpy.floor_divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.fmax

	
CudaNtuplesUFuncs.fmax(x2, out=None)

	Element-wise maximum of array elements.

See also

numpy.fmax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.fmin

	
CudaNtuplesUFuncs.fmin(x2, out=None)

	Element-wise minimum of array elements.

See also

numpy.fmin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.fmod

	
CudaNtuplesUFuncs.fmod(x2, out=None)

	Return the element-wise remainder of division.

See also

numpy.fmod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.greater

	
CudaNtuplesUFuncs.greater(x2, out=None)

	Return the truth value of (x1 > x2) element-wise.

See also

numpy.greater

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.greater_equal

	
CudaNtuplesUFuncs.greater_equal(x2, out=None)

	Return the truth value of (x1 >= x2) element-wise.

See also

numpy.greater_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.hypot

	
CudaNtuplesUFuncs.hypot(x2, out=None)

	Given the “legs” of a right triangle, return its hypotenuse.

See also

numpy.hypot

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.invert

	
CudaNtuplesUFuncs.invert(out=None)

	Compute bit-wise inversion, or bit-wise NOT, element-wise.

See also

numpy.invert

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.isfinite

	
CudaNtuplesUFuncs.isfinite(out=None)

	Test element-wise for finiteness (not infinity or not Not a Number).

See also

numpy.isfinite

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.isinf

	
CudaNtuplesUFuncs.isinf(out=None)

	Test element-wise for positive or negative infinity.

See also

numpy.isinf

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.isnan

	
CudaNtuplesUFuncs.isnan(out=None)

	Test element-wise for NaN and return result as a boolean array.

See also

numpy.isnan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.left_shift

	
CudaNtuplesUFuncs.left_shift(x2, out=None)

	Shift the bits of an integer to the left.

See also

numpy.left_shift

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.less

	
CudaNtuplesUFuncs.less(x2, out=None)

	Return the truth value of (x1 < x2) element-wise.

See also

numpy.less

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.less_equal

	
CudaNtuplesUFuncs.less_equal(x2, out=None)

	Return the truth value of (x1 =< x2) element-wise.

See also

numpy.less_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.log

	
CudaNtuplesUFuncs.log(out=None)

	Natural logarithm, element-wise.

See also

numpy.log

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.log10

	
CudaNtuplesUFuncs.log10(out=None)

	Return the base 10 logarithm of the input array, element-wise.

See also

numpy.log10

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.log1p

	
CudaNtuplesUFuncs.log1p(out=None)

	Return the natural logarithm of one plus the input array, element-wise.

See also

numpy.log1p

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.log2

	
CudaNtuplesUFuncs.log2(out=None)

	Base-2 logarithm of x.

See also

numpy.log2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.logaddexp

	
CudaNtuplesUFuncs.logaddexp(x2, out=None)

	Logarithm of the sum of exponentiations of the inputs.

See also

numpy.logaddexp

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.logaddexp2

	
CudaNtuplesUFuncs.logaddexp2(x2, out=None)

	Logarithm of the sum of exponentiations of the inputs in base-2.

See also

numpy.logaddexp2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.logical_and

	
CudaNtuplesUFuncs.logical_and(x2, out=None)

	Compute the truth value of x1 AND x2 element-wise.

See also

numpy.logical_and

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.logical_not

	
CudaNtuplesUFuncs.logical_not(out=None)

	Compute the truth value of NOT x element-wise.

See also

numpy.logical_not

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.logical_or

	
CudaNtuplesUFuncs.logical_or(x2, out=None)

	Compute the truth value of x1 OR x2 element-wise.

See also

numpy.logical_or

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.logical_xor

	
CudaNtuplesUFuncs.logical_xor(x2, out=None)

	Compute the truth value of x1 XOR x2, element-wise.

See also

numpy.logical_xor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.max

	
CudaNtuplesUFuncs.max()

	Maximum value in array.

See also

numpy.amax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.maximum

	
CudaNtuplesUFuncs.maximum(x2, out=None)

	Element-wise maximum of array elements.

See also

numpy.maximum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.min

	
CudaNtuplesUFuncs.min()

	Minimum value in array.

See also

numpy.amin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.minimum

	
CudaNtuplesUFuncs.minimum(x2, out=None)

	Element-wise minimum of array elements.

See also

numpy.minimum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.mod

	
CudaNtuplesUFuncs.mod(x2, out=None)

	Return element-wise remainder of division.

See also

numpy.mod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.modf

	
CudaNtuplesUFuncs.modf(out1=None, out2=None)

	Return the fractional and integral parts of an array, element-wise.

See also

numpy.modf

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.multiply

	
CudaNtuplesUFuncs.multiply(x2, out=None)

	Multiply arguments element-wise.

See also

numpy.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.negative

	
CudaNtuplesUFuncs.negative(out=None)

	Numerical negative, element-wise.

See also

numpy.negative

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.not_equal

	
CudaNtuplesUFuncs.not_equal(x2, out=None)

	Return (x1 != x2) element-wise.

See also

numpy.not_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.power

	
CudaNtuplesUFuncs.power(x2, out=None)

	First array elements raised to powers from second array, element-wise.

See also

numpy.power

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.prod

	
CudaNtuplesUFuncs.prod()

	Product of array elements.

See also

numpy.prod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.rad2deg

	
CudaNtuplesUFuncs.rad2deg(out=None)

	Convert angles from radians to degrees.

See also

numpy.rad2deg

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.reciprocal

	
CudaNtuplesUFuncs.reciprocal(out=None)

	Return the reciprocal of the argument, element-wise.

See also

numpy.reciprocal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.remainder

	
CudaNtuplesUFuncs.remainder(x2, out=None)

	Return element-wise remainder of division.

See also

numpy.remainder

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.right_shift

	
CudaNtuplesUFuncs.right_shift(x2, out=None)

	Shift the bits of an integer to the right.

See also

numpy.right_shift

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.rint

	
CudaNtuplesUFuncs.rint(out=None)

	Round elements of the array to the nearest integer.

See also

numpy.rint

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.sign

	
CudaNtuplesUFuncs.sign(out=None)

	Returns an element-wise indication of the sign of a number.

See also

numpy.sign

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.signbit

	
CudaNtuplesUFuncs.signbit(out=None)

	Returns element-wise True where signbit is set (less than zero).

See also

numpy.signbit

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.sin

	
CudaNtuplesUFuncs.sin(out=None)

	Trigonometric sine, element-wise.

See also

numpy.sin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.sinh

	
CudaNtuplesUFuncs.sinh(out=None)

	Hyperbolic sine, element-wise.

See also

numpy.sinh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.sqrt

	
CudaNtuplesUFuncs.sqrt(out=None)

	Return the positive square-root of an array, element-wise.

See also

numpy.sqrt

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.square

	
CudaNtuplesUFuncs.square(out=None)

	Return the element-wise square of the input.

See also

numpy.square

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.subtract

	
CudaNtuplesUFuncs.subtract(x2, out=None)

	Subtract arguments, element-wise.

See also

numpy.subtract

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.sum

	
CudaNtuplesUFuncs.sum()

	Sum of array elements.

See also

numpy.sum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.tan

	
CudaNtuplesUFuncs.tan(out=None)

	Compute tangent element-wise.

See also

numpy.tan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.tanh

	
CudaNtuplesUFuncs.tanh(out=None)

	Compute hyperbolic tangent element-wise.

See also

numpy.tanh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.true_divide

	
CudaNtuplesUFuncs.true_divide(x2, out=None)

	Returns a true division of the inputs, element-wise.

See also

numpy.true_divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	CudaNtuplesUFuncs

CudaNtuplesUFuncs.trunc

	
CudaNtuplesUFuncs.trunc(out=None)

	Return the truncated value of the input, element-wise.

See also

numpy.trunc

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

DiscreteLpUFuncs

	
class odl.util.ufuncs.DiscreteLpUFuncs(vector)

	Bases: odl.util.ufuncs.NtuplesBaseUFuncs

UFuncs for DiscreteLpVector objects.

Internal object, should not be created except in DiscreteLpVector.

Methods

	__eq__
	Return self==value.

	absolute([out])
	Calculate the absolute value element-wise.

	add(x2[,out])
	Add arguments element-wise.

	arccos([out])
	Trigonometric inverse cosine, element-wise.

	arccosh([out])
	Inverse hyperbolic cosine, element-wise.

	arcsin([out])
	Inverse sine, element-wise.

	arcsinh([out])
	Inverse hyperbolic sine element-wise.

	arctan([out])
	Trigonometric inverse tangent, element-wise.

	arctan2(x2[,out])
	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

	arctanh([out])
	Inverse hyperbolic tangent element-wise.

	bitwise_and(x2[,out])
	Compute the bit-wise AND of two arrays element-wise.

	bitwise_or(x2[,out])
	Compute the bit-wise OR of two arrays element-wise.

	bitwise_xor(x2[,out])
	Compute the bit-wise XOR of two arrays element-wise.

	ceil([out])
	Return the ceiling of the input, element-wise.

	conj([out])
	Return the complex conjugate, element-wise.

	copysign(x2[,out])
	Change the sign of x1 to that of x2, element-wise.

	cos([out])
	Cosine element-wise.

	cosh([out])
	Hyperbolic cosine, element-wise.

	deg2rad([out])
	Convert angles from degrees to radians.

	divide(x2[,out])
	Returns a true division of the inputs, element-wise.

	equal(x2[,out])
	Return (x1 == x2) element-wise.

	exp([out])
	Calculate the exponential of all elements in the input array.

	exp2([out])
	Calculate 2**p for all p in the input array.

	expm1([out])
	Calculate exp(x) - 1 for all elements in the array.

	floor([out])
	Return the floor of the input, element-wise.

	floor_divide(x2[,out])
	Return the largest integer smaller or equal to the division of the

	fmax(x2[,out])
	Element-wise maximum of array elements.

	fmin(x2[,out])
	Element-wise minimum of array elements.

	fmod(x2[,out])
	Return the element-wise remainder of division.

	greater(x2[,out])
	Return the truth value of (x1 > x2) element-wise.

	greater_equal(x2[,out])
	Return the truth value of (x1 >= x2) element-wise.

	hypot(x2[,out])
	Given the “legs” of a right triangle, return its hypotenuse.

	invert([out])
	Compute bit-wise inversion, or bit-wise NOT, element-wise.

	isfinite([out])
	Test element-wise for finiteness (not infinity or not Not a Number).

	isinf([out])
	Test element-wise for positive or negative infinity.

	isnan([out])
	Test element-wise for NaN and return result as a boolean array.

	left_shift(x2[,out])
	Shift the bits of an integer to the left.

	less(x2[,out])
	Return the truth value of (x1 < x2) element-wise.

	less_equal(x2[,out])
	Return the truth value of (x1 =< x2) element-wise.

	log([out])
	Natural logarithm, element-wise.

	log10([out])
	Return the base 10 logarithm of the input array, element-wise.

	log1p([out])
	Return the natural logarithm of one plus the input array, element-wise.

	log2([out])
	Base-2 logarithm of x.

	logaddexp(x2[,out])
	Logarithm of the sum of exponentiations of the inputs.

	logaddexp2(x2[,out])
	Logarithm of the sum of exponentiations of the inputs in base-2.

	logical_and(x2[,out])
	Compute the truth value of x1 AND x2 element-wise.

	logical_not([out])
	Compute the truth value of NOT x element-wise.

	logical_or(x2[,out])
	Compute the truth value of x1 OR x2 element-wise.

	logical_xor(x2[,out])
	Compute the truth value of x1 XOR x2, element-wise.

	max()
	Maximum value in array.

	maximum(x2[,out])
	Element-wise maximum of array elements.

	min()
	Minimum value in array.

	minimum(x2[,out])
	Element-wise minimum of array elements.

	mod(x2[,out])
	Return element-wise remainder of division.

	modf([out1,out2])
	Return the fractional and integral parts of an array, element-wise.

	multiply(x2[,out])
	Multiply arguments element-wise.

	negative([out])
	Numerical negative, element-wise.

	not_equal(x2[,out])
	Return (x1 != x2) element-wise.

	power(x2[,out])
	First array elements raised to powers from second array, element-wise.

	prod()
	Product of array elements.

	rad2deg([out])
	Convert angles from radians to degrees.

	reciprocal([out])
	Return the reciprocal of the argument, element-wise.

	remainder(x2[,out])
	Return element-wise remainder of division.

	right_shift(x2[,out])
	Shift the bits of an integer to the right.

	rint([out])
	Round elements of the array to the nearest integer.

	sign([out])
	Returns an element-wise indication of the sign of a number.

	signbit([out])
	Returns element-wise True where signbit is set (less than zero).

	sin([out])
	Trigonometric sine, element-wise.

	sinh([out])
	Hyperbolic sine, element-wise.

	sqrt([out])
	Return the positive square-root of an array, element-wise.

	square([out])
	Return the element-wise square of the input.

	subtract(x2[,out])
	Subtract arguments, element-wise.

	sum()
	Sum of array elements.

	tan([out])
	Compute tangent element-wise.

	tanh([out])
	Compute hyperbolic tangent element-wise.

	true_divide(x2[,out])
	Returns a true division of the inputs, element-wise.

	trunc([out])
	Return the truncated value of the input, element-wise.

	
__init__(vector)

	Create ufunc wrapper for vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.absolute

	
DiscreteLpUFuncs.absolute(out=None)

	Calculate the absolute value element-wise.

See also

numpy.absolute

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.add

	
DiscreteLpUFuncs.add(x2, out=None)

	Add arguments element-wise.

See also

numpy.add

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.arccos

	
DiscreteLpUFuncs.arccos(out=None)

	Trigonometric inverse cosine, element-wise.

See also

numpy.arccos

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.arccosh

	
DiscreteLpUFuncs.arccosh(out=None)

	Inverse hyperbolic cosine, element-wise.

See also

numpy.arccosh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.arcsin

	
DiscreteLpUFuncs.arcsin(out=None)

	Inverse sine, element-wise.

See also

numpy.arcsin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.arcsinh

	
DiscreteLpUFuncs.arcsinh(out=None)

	Inverse hyperbolic sine element-wise.

See also

numpy.arcsinh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.arctan

	
DiscreteLpUFuncs.arctan(out=None)

	Trigonometric inverse tangent, element-wise.

See also

numpy.arctan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.arctan2

	
DiscreteLpUFuncs.arctan2(x2, out=None)

	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

See also

numpy.arctan2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.arctanh

	
DiscreteLpUFuncs.arctanh(out=None)

	Inverse hyperbolic tangent element-wise.

See also

numpy.arctanh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.bitwise_and

	
DiscreteLpUFuncs.bitwise_and(x2, out=None)

	Compute the bit-wise AND of two arrays element-wise.

See also

numpy.bitwise_and

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.bitwise_or

	
DiscreteLpUFuncs.bitwise_or(x2, out=None)

	Compute the bit-wise OR of two arrays element-wise.

See also

numpy.bitwise_or

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.bitwise_xor

	
DiscreteLpUFuncs.bitwise_xor(x2, out=None)

	Compute the bit-wise XOR of two arrays element-wise.

See also

numpy.bitwise_xor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.ceil

	
DiscreteLpUFuncs.ceil(out=None)

	Return the ceiling of the input, element-wise.

See also

numpy.ceil

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.conj

	
DiscreteLpUFuncs.conj(out=None)

	Return the complex conjugate, element-wise.

See also

numpy.conj

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.copysign

	
DiscreteLpUFuncs.copysign(x2, out=None)

	Change the sign of x1 to that of x2, element-wise.

See also

numpy.copysign

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.cos

	
DiscreteLpUFuncs.cos(out=None)

	Cosine element-wise.

See also

numpy.cos

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.cosh

	
DiscreteLpUFuncs.cosh(out=None)

	Hyperbolic cosine, element-wise.

See also

numpy.cosh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.deg2rad

	
DiscreteLpUFuncs.deg2rad(out=None)

	Convert angles from degrees to radians.

See also

numpy.deg2rad

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.divide

	
DiscreteLpUFuncs.divide(x2, out=None)

	Returns a true division of the inputs, element-wise.

See also

numpy.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.equal

	
DiscreteLpUFuncs.equal(x2, out=None)

	Return (x1 == x2) element-wise.

See also

numpy.equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.exp

	
DiscreteLpUFuncs.exp(out=None)

	Calculate the exponential of all elements in the input array.

See also

numpy.exp

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.exp2

	
DiscreteLpUFuncs.exp2(out=None)

	Calculate 2**p for all p in the input array.

See also

numpy.exp2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.expm1

	
DiscreteLpUFuncs.expm1(out=None)

	Calculate exp(x) - 1 for all elements in the array.

See also

numpy.expm1

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.floor

	
DiscreteLpUFuncs.floor(out=None)

	Return the floor of the input, element-wise.

See also

numpy.floor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.floor_divide

	
DiscreteLpUFuncs.floor_divide(x2, out=None)

	Return the largest integer smaller or equal to the division of the

See also

numpy.floor_divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.fmax

	
DiscreteLpUFuncs.fmax(x2, out=None)

	Element-wise maximum of array elements.

See also

numpy.fmax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.fmin

	
DiscreteLpUFuncs.fmin(x2, out=None)

	Element-wise minimum of array elements.

See also

numpy.fmin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.fmod

	
DiscreteLpUFuncs.fmod(x2, out=None)

	Return the element-wise remainder of division.

See also

numpy.fmod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.greater

	
DiscreteLpUFuncs.greater(x2, out=None)

	Return the truth value of (x1 > x2) element-wise.

See also

numpy.greater

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.greater_equal

	
DiscreteLpUFuncs.greater_equal(x2, out=None)

	Return the truth value of (x1 >= x2) element-wise.

See also

numpy.greater_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.hypot

	
DiscreteLpUFuncs.hypot(x2, out=None)

	Given the “legs” of a right triangle, return its hypotenuse.

See also

numpy.hypot

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.invert

	
DiscreteLpUFuncs.invert(out=None)

	Compute bit-wise inversion, or bit-wise NOT, element-wise.

See also

numpy.invert

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.isfinite

	
DiscreteLpUFuncs.isfinite(out=None)

	Test element-wise for finiteness (not infinity or not Not a Number).

See also

numpy.isfinite

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.isinf

	
DiscreteLpUFuncs.isinf(out=None)

	Test element-wise for positive or negative infinity.

See also

numpy.isinf

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.isnan

	
DiscreteLpUFuncs.isnan(out=None)

	Test element-wise for NaN and return result as a boolean array.

See also

numpy.isnan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.left_shift

	
DiscreteLpUFuncs.left_shift(x2, out=None)

	Shift the bits of an integer to the left.

See also

numpy.left_shift

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.less

	
DiscreteLpUFuncs.less(x2, out=None)

	Return the truth value of (x1 < x2) element-wise.

See also

numpy.less

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.less_equal

	
DiscreteLpUFuncs.less_equal(x2, out=None)

	Return the truth value of (x1 =< x2) element-wise.

See also

numpy.less_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.log

	
DiscreteLpUFuncs.log(out=None)

	Natural logarithm, element-wise.

See also

numpy.log

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.log10

	
DiscreteLpUFuncs.log10(out=None)

	Return the base 10 logarithm of the input array, element-wise.

See also

numpy.log10

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.log1p

	
DiscreteLpUFuncs.log1p(out=None)

	Return the natural logarithm of one plus the input array, element-wise.

See also

numpy.log1p

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.log2

	
DiscreteLpUFuncs.log2(out=None)

	Base-2 logarithm of x.

See also

numpy.log2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.logaddexp

	
DiscreteLpUFuncs.logaddexp(x2, out=None)

	Logarithm of the sum of exponentiations of the inputs.

See also

numpy.logaddexp

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.logaddexp2

	
DiscreteLpUFuncs.logaddexp2(x2, out=None)

	Logarithm of the sum of exponentiations of the inputs in base-2.

See also

numpy.logaddexp2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.logical_and

	
DiscreteLpUFuncs.logical_and(x2, out=None)

	Compute the truth value of x1 AND x2 element-wise.

See also

numpy.logical_and

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.logical_not

	
DiscreteLpUFuncs.logical_not(out=None)

	Compute the truth value of NOT x element-wise.

See also

numpy.logical_not

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.logical_or

	
DiscreteLpUFuncs.logical_or(x2, out=None)

	Compute the truth value of x1 OR x2 element-wise.

See also

numpy.logical_or

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.logical_xor

	
DiscreteLpUFuncs.logical_xor(x2, out=None)

	Compute the truth value of x1 XOR x2, element-wise.

See also

numpy.logical_xor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.max

	
DiscreteLpUFuncs.max()

	Maximum value in array.

See also

numpy.amax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.maximum

	
DiscreteLpUFuncs.maximum(x2, out=None)

	Element-wise maximum of array elements.

See also

numpy.maximum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.min

	
DiscreteLpUFuncs.min()

	Minimum value in array.

See also

numpy.amin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.minimum

	
DiscreteLpUFuncs.minimum(x2, out=None)

	Element-wise minimum of array elements.

See also

numpy.minimum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.mod

	
DiscreteLpUFuncs.mod(x2, out=None)

	Return element-wise remainder of division.

See also

numpy.mod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.modf

	
DiscreteLpUFuncs.modf(out1=None, out2=None)

	Return the fractional and integral parts of an array, element-wise.

See also

numpy.modf

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.multiply

	
DiscreteLpUFuncs.multiply(x2, out=None)

	Multiply arguments element-wise.

See also

numpy.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.negative

	
DiscreteLpUFuncs.negative(out=None)

	Numerical negative, element-wise.

See also

numpy.negative

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.not_equal

	
DiscreteLpUFuncs.not_equal(x2, out=None)

	Return (x1 != x2) element-wise.

See also

numpy.not_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.power

	
DiscreteLpUFuncs.power(x2, out=None)

	First array elements raised to powers from second array, element-wise.

See also

numpy.power

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.prod

	
DiscreteLpUFuncs.prod()

	Product of array elements.

See also

numpy.prod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.rad2deg

	
DiscreteLpUFuncs.rad2deg(out=None)

	Convert angles from radians to degrees.

See also

numpy.rad2deg

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.reciprocal

	
DiscreteLpUFuncs.reciprocal(out=None)

	Return the reciprocal of the argument, element-wise.

See also

numpy.reciprocal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.remainder

	
DiscreteLpUFuncs.remainder(x2, out=None)

	Return element-wise remainder of division.

See also

numpy.remainder

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.right_shift

	
DiscreteLpUFuncs.right_shift(x2, out=None)

	Shift the bits of an integer to the right.

See also

numpy.right_shift

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.rint

	
DiscreteLpUFuncs.rint(out=None)

	Round elements of the array to the nearest integer.

See also

numpy.rint

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.sign

	
DiscreteLpUFuncs.sign(out=None)

	Returns an element-wise indication of the sign of a number.

See also

numpy.sign

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.signbit

	
DiscreteLpUFuncs.signbit(out=None)

	Returns element-wise True where signbit is set (less than zero).

See also

numpy.signbit

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.sin

	
DiscreteLpUFuncs.sin(out=None)

	Trigonometric sine, element-wise.

See also

numpy.sin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.sinh

	
DiscreteLpUFuncs.sinh(out=None)

	Hyperbolic sine, element-wise.

See also

numpy.sinh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.sqrt

	
DiscreteLpUFuncs.sqrt(out=None)

	Return the positive square-root of an array, element-wise.

See also

numpy.sqrt

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.square

	
DiscreteLpUFuncs.square(out=None)

	Return the element-wise square of the input.

See also

numpy.square

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.subtract

	
DiscreteLpUFuncs.subtract(x2, out=None)

	Subtract arguments, element-wise.

See also

numpy.subtract

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.sum

	
DiscreteLpUFuncs.sum()

	Sum of array elements.

See also

numpy.sum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.tan

	
DiscreteLpUFuncs.tan(out=None)

	Compute tangent element-wise.

See also

numpy.tan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.tanh

	
DiscreteLpUFuncs.tanh(out=None)

	Compute hyperbolic tangent element-wise.

See also

numpy.tanh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.true_divide

	
DiscreteLpUFuncs.true_divide(x2, out=None)

	Returns a true division of the inputs, element-wise.

See also

numpy.true_divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	DiscreteLpUFuncs

DiscreteLpUFuncs.trunc

	
DiscreteLpUFuncs.trunc(out=None)

	Return the truncated value of the input, element-wise.

See also

numpy.trunc

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

NtuplesBaseUFuncs

	
class odl.util.ufuncs.NtuplesBaseUFuncs(vector)

	Bases: object

UFuncs for NtuplesBaseVector objects.

Internal object, should not be created except in NtuplesBaseVector.

Methods

	__eq__
	Return self==value.

	absolute([out])
	Calculate the absolute value element-wise.

	add(x2[,out])
	Add arguments element-wise.

	arccos([out])
	Trigonometric inverse cosine, element-wise.

	arccosh([out])
	Inverse hyperbolic cosine, element-wise.

	arcsin([out])
	Inverse sine, element-wise.

	arcsinh([out])
	Inverse hyperbolic sine element-wise.

	arctan([out])
	Trigonometric inverse tangent, element-wise.

	arctan2(x2[,out])
	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

	arctanh([out])
	Inverse hyperbolic tangent element-wise.

	bitwise_and(x2[,out])
	Compute the bit-wise AND of two arrays element-wise.

	bitwise_or(x2[,out])
	Compute the bit-wise OR of two arrays element-wise.

	bitwise_xor(x2[,out])
	Compute the bit-wise XOR of two arrays element-wise.

	ceil([out])
	Return the ceiling of the input, element-wise.

	conj([out])
	Return the complex conjugate, element-wise.

	copysign(x2[,out])
	Change the sign of x1 to that of x2, element-wise.

	cos([out])
	Cosine element-wise.

	cosh([out])
	Hyperbolic cosine, element-wise.

	deg2rad([out])
	Convert angles from degrees to radians.

	divide(x2[,out])
	Returns a true division of the inputs, element-wise.

	equal(x2[,out])
	Return (x1 == x2) element-wise.

	exp([out])
	Calculate the exponential of all elements in the input array.

	exp2([out])
	Calculate 2**p for all p in the input array.

	expm1([out])
	Calculate exp(x) - 1 for all elements in the array.

	floor([out])
	Return the floor of the input, element-wise.

	floor_divide(x2[,out])
	Return the largest integer smaller or equal to the division of the

	fmax(x2[,out])
	Element-wise maximum of array elements.

	fmin(x2[,out])
	Element-wise minimum of array elements.

	fmod(x2[,out])
	Return the element-wise remainder of division.

	greater(x2[,out])
	Return the truth value of (x1 > x2) element-wise.

	greater_equal(x2[,out])
	Return the truth value of (x1 >= x2) element-wise.

	hypot(x2[,out])
	Given the “legs” of a right triangle, return its hypotenuse.

	invert([out])
	Compute bit-wise inversion, or bit-wise NOT, element-wise.

	isfinite([out])
	Test element-wise for finiteness (not infinity or not Not a Number).

	isinf([out])
	Test element-wise for positive or negative infinity.

	isnan([out])
	Test element-wise for NaN and return result as a boolean array.

	left_shift(x2[,out])
	Shift the bits of an integer to the left.

	less(x2[,out])
	Return the truth value of (x1 < x2) element-wise.

	less_equal(x2[,out])
	Return the truth value of (x1 =< x2) element-wise.

	log([out])
	Natural logarithm, element-wise.

	log10([out])
	Return the base 10 logarithm of the input array, element-wise.

	log1p([out])
	Return the natural logarithm of one plus the input array, element-wise.

	log2([out])
	Base-2 logarithm of x.

	logaddexp(x2[,out])
	Logarithm of the sum of exponentiations of the inputs.

	logaddexp2(x2[,out])
	Logarithm of the sum of exponentiations of the inputs in base-2.

	logical_and(x2[,out])
	Compute the truth value of x1 AND x2 element-wise.

	logical_not([out])
	Compute the truth value of NOT x element-wise.

	logical_or(x2[,out])
	Compute the truth value of x1 OR x2 element-wise.

	logical_xor(x2[,out])
	Compute the truth value of x1 XOR x2, element-wise.

	max()
	Maximum value in array.

	maximum(x2[,out])
	Element-wise maximum of array elements.

	min()
	Minimum value in array.

	minimum(x2[,out])
	Element-wise minimum of array elements.

	mod(x2[,out])
	Return element-wise remainder of division.

	modf([out1,out2])
	Return the fractional and integral parts of an array, element-wise.

	multiply(x2[,out])
	Multiply arguments element-wise.

	negative([out])
	Numerical negative, element-wise.

	not_equal(x2[,out])
	Return (x1 != x2) element-wise.

	power(x2[,out])
	First array elements raised to powers from second array, element-wise.

	prod()
	Product of array elements.

	rad2deg([out])
	Convert angles from radians to degrees.

	reciprocal([out])
	Return the reciprocal of the argument, element-wise.

	remainder(x2[,out])
	Return element-wise remainder of division.

	right_shift(x2[,out])
	Shift the bits of an integer to the right.

	rint([out])
	Round elements of the array to the nearest integer.

	sign([out])
	Returns an element-wise indication of the sign of a number.

	signbit([out])
	Returns element-wise True where signbit is set (less than zero).

	sin([out])
	Trigonometric sine, element-wise.

	sinh([out])
	Hyperbolic sine, element-wise.

	sqrt([out])
	Return the positive square-root of an array, element-wise.

	square([out])
	Return the element-wise square of the input.

	subtract(x2[,out])
	Subtract arguments, element-wise.

	sum()
	Sum of array elements.

	tan([out])
	Compute tangent element-wise.

	tanh([out])
	Compute hyperbolic tangent element-wise.

	true_divide(x2[,out])
	Returns a true division of the inputs, element-wise.

	trunc([out])
	Return the truncated value of the input, element-wise.

	
__init__(vector)

	Create ufunc wrapper for vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.absolute

	
NtuplesBaseUFuncs.absolute(out=None)

	Calculate the absolute value element-wise.

See also

numpy.absolute

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.add

	
NtuplesBaseUFuncs.add(x2, out=None)

	Add arguments element-wise.

See also

numpy.add

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.arccos

	
NtuplesBaseUFuncs.arccos(out=None)

	Trigonometric inverse cosine, element-wise.

See also

numpy.arccos

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.arccosh

	
NtuplesBaseUFuncs.arccosh(out=None)

	Inverse hyperbolic cosine, element-wise.

See also

numpy.arccosh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.arcsin

	
NtuplesBaseUFuncs.arcsin(out=None)

	Inverse sine, element-wise.

See also

numpy.arcsin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.arcsinh

	
NtuplesBaseUFuncs.arcsinh(out=None)

	Inverse hyperbolic sine element-wise.

See also

numpy.arcsinh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.arctan

	
NtuplesBaseUFuncs.arctan(out=None)

	Trigonometric inverse tangent, element-wise.

See also

numpy.arctan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.arctan2

	
NtuplesBaseUFuncs.arctan2(x2, out=None)

	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

See also

numpy.arctan2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.arctanh

	
NtuplesBaseUFuncs.arctanh(out=None)

	Inverse hyperbolic tangent element-wise.

See also

numpy.arctanh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.bitwise_and

	
NtuplesBaseUFuncs.bitwise_and(x2, out=None)

	Compute the bit-wise AND of two arrays element-wise.

See also

numpy.bitwise_and

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.bitwise_or

	
NtuplesBaseUFuncs.bitwise_or(x2, out=None)

	Compute the bit-wise OR of two arrays element-wise.

See also

numpy.bitwise_or

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.bitwise_xor

	
NtuplesBaseUFuncs.bitwise_xor(x2, out=None)

	Compute the bit-wise XOR of two arrays element-wise.

See also

numpy.bitwise_xor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.ceil

	
NtuplesBaseUFuncs.ceil(out=None)

	Return the ceiling of the input, element-wise.

See also

numpy.ceil

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.conj

	
NtuplesBaseUFuncs.conj(out=None)

	Return the complex conjugate, element-wise.

See also

numpy.conj

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.copysign

	
NtuplesBaseUFuncs.copysign(x2, out=None)

	Change the sign of x1 to that of x2, element-wise.

See also

numpy.copysign

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.cos

	
NtuplesBaseUFuncs.cos(out=None)

	Cosine element-wise.

See also

numpy.cos

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.cosh

	
NtuplesBaseUFuncs.cosh(out=None)

	Hyperbolic cosine, element-wise.

See also

numpy.cosh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.deg2rad

	
NtuplesBaseUFuncs.deg2rad(out=None)

	Convert angles from degrees to radians.

See also

numpy.deg2rad

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.divide

	
NtuplesBaseUFuncs.divide(x2, out=None)

	Returns a true division of the inputs, element-wise.

See also

numpy.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.equal

	
NtuplesBaseUFuncs.equal(x2, out=None)

	Return (x1 == x2) element-wise.

See also

numpy.equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.exp

	
NtuplesBaseUFuncs.exp(out=None)

	Calculate the exponential of all elements in the input array.

See also

numpy.exp

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.exp2

	
NtuplesBaseUFuncs.exp2(out=None)

	Calculate 2**p for all p in the input array.

See also

numpy.exp2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.expm1

	
NtuplesBaseUFuncs.expm1(out=None)

	Calculate exp(x) - 1 for all elements in the array.

See also

numpy.expm1

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.floor

	
NtuplesBaseUFuncs.floor(out=None)

	Return the floor of the input, element-wise.

See also

numpy.floor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.floor_divide

	
NtuplesBaseUFuncs.floor_divide(x2, out=None)

	Return the largest integer smaller or equal to the division of the

See also

numpy.floor_divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.fmax

	
NtuplesBaseUFuncs.fmax(x2, out=None)

	Element-wise maximum of array elements.

See also

numpy.fmax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.fmin

	
NtuplesBaseUFuncs.fmin(x2, out=None)

	Element-wise minimum of array elements.

See also

numpy.fmin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.fmod

	
NtuplesBaseUFuncs.fmod(x2, out=None)

	Return the element-wise remainder of division.

See also

numpy.fmod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.greater

	
NtuplesBaseUFuncs.greater(x2, out=None)

	Return the truth value of (x1 > x2) element-wise.

See also

numpy.greater

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.greater_equal

	
NtuplesBaseUFuncs.greater_equal(x2, out=None)

	Return the truth value of (x1 >= x2) element-wise.

See also

numpy.greater_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.hypot

	
NtuplesBaseUFuncs.hypot(x2, out=None)

	Given the “legs” of a right triangle, return its hypotenuse.

See also

numpy.hypot

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.invert

	
NtuplesBaseUFuncs.invert(out=None)

	Compute bit-wise inversion, or bit-wise NOT, element-wise.

See also

numpy.invert

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.isfinite

	
NtuplesBaseUFuncs.isfinite(out=None)

	Test element-wise for finiteness (not infinity or not Not a Number).

See also

numpy.isfinite

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.isinf

	
NtuplesBaseUFuncs.isinf(out=None)

	Test element-wise for positive or negative infinity.

See also

numpy.isinf

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.isnan

	
NtuplesBaseUFuncs.isnan(out=None)

	Test element-wise for NaN and return result as a boolean array.

See also

numpy.isnan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.left_shift

	
NtuplesBaseUFuncs.left_shift(x2, out=None)

	Shift the bits of an integer to the left.

See also

numpy.left_shift

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.less

	
NtuplesBaseUFuncs.less(x2, out=None)

	Return the truth value of (x1 < x2) element-wise.

See also

numpy.less

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.less_equal

	
NtuplesBaseUFuncs.less_equal(x2, out=None)

	Return the truth value of (x1 =< x2) element-wise.

See also

numpy.less_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.log

	
NtuplesBaseUFuncs.log(out=None)

	Natural logarithm, element-wise.

See also

numpy.log

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.log10

	
NtuplesBaseUFuncs.log10(out=None)

	Return the base 10 logarithm of the input array, element-wise.

See also

numpy.log10

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.log1p

	
NtuplesBaseUFuncs.log1p(out=None)

	Return the natural logarithm of one plus the input array, element-wise.

See also

numpy.log1p

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.log2

	
NtuplesBaseUFuncs.log2(out=None)

	Base-2 logarithm of x.

See also

numpy.log2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.logaddexp

	
NtuplesBaseUFuncs.logaddexp(x2, out=None)

	Logarithm of the sum of exponentiations of the inputs.

See also

numpy.logaddexp

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.logaddexp2

	
NtuplesBaseUFuncs.logaddexp2(x2, out=None)

	Logarithm of the sum of exponentiations of the inputs in base-2.

See also

numpy.logaddexp2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.logical_and

	
NtuplesBaseUFuncs.logical_and(x2, out=None)

	Compute the truth value of x1 AND x2 element-wise.

See also

numpy.logical_and

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.logical_not

	
NtuplesBaseUFuncs.logical_not(out=None)

	Compute the truth value of NOT x element-wise.

See also

numpy.logical_not

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.logical_or

	
NtuplesBaseUFuncs.logical_or(x2, out=None)

	Compute the truth value of x1 OR x2 element-wise.

See also

numpy.logical_or

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.logical_xor

	
NtuplesBaseUFuncs.logical_xor(x2, out=None)

	Compute the truth value of x1 XOR x2, element-wise.

See also

numpy.logical_xor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.max

	
NtuplesBaseUFuncs.max()

	Maximum value in array.

See also

numpy.amax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.maximum

	
NtuplesBaseUFuncs.maximum(x2, out=None)

	Element-wise maximum of array elements.

See also

numpy.maximum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.min

	
NtuplesBaseUFuncs.min()

	Minimum value in array.

See also

numpy.amin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.minimum

	
NtuplesBaseUFuncs.minimum(x2, out=None)

	Element-wise minimum of array elements.

See also

numpy.minimum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.mod

	
NtuplesBaseUFuncs.mod(x2, out=None)

	Return element-wise remainder of division.

See also

numpy.mod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.modf

	
NtuplesBaseUFuncs.modf(out1=None, out2=None)

	Return the fractional and integral parts of an array, element-wise.

See also

numpy.modf

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.multiply

	
NtuplesBaseUFuncs.multiply(x2, out=None)

	Multiply arguments element-wise.

See also

numpy.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.negative

	
NtuplesBaseUFuncs.negative(out=None)

	Numerical negative, element-wise.

See also

numpy.negative

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.not_equal

	
NtuplesBaseUFuncs.not_equal(x2, out=None)

	Return (x1 != x2) element-wise.

See also

numpy.not_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.power

	
NtuplesBaseUFuncs.power(x2, out=None)

	First array elements raised to powers from second array, element-wise.

See also

numpy.power

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.prod

	
NtuplesBaseUFuncs.prod()

	Product of array elements.

See also

numpy.prod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.rad2deg

	
NtuplesBaseUFuncs.rad2deg(out=None)

	Convert angles from radians to degrees.

See also

numpy.rad2deg

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.reciprocal

	
NtuplesBaseUFuncs.reciprocal(out=None)

	Return the reciprocal of the argument, element-wise.

See also

numpy.reciprocal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.remainder

	
NtuplesBaseUFuncs.remainder(x2, out=None)

	Return element-wise remainder of division.

See also

numpy.remainder

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.right_shift

	
NtuplesBaseUFuncs.right_shift(x2, out=None)

	Shift the bits of an integer to the right.

See also

numpy.right_shift

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.rint

	
NtuplesBaseUFuncs.rint(out=None)

	Round elements of the array to the nearest integer.

See also

numpy.rint

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.sign

	
NtuplesBaseUFuncs.sign(out=None)

	Returns an element-wise indication of the sign of a number.

See also

numpy.sign

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.signbit

	
NtuplesBaseUFuncs.signbit(out=None)

	Returns element-wise True where signbit is set (less than zero).

See also

numpy.signbit

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.sin

	
NtuplesBaseUFuncs.sin(out=None)

	Trigonometric sine, element-wise.

See also

numpy.sin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.sinh

	
NtuplesBaseUFuncs.sinh(out=None)

	Hyperbolic sine, element-wise.

See also

numpy.sinh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.sqrt

	
NtuplesBaseUFuncs.sqrt(out=None)

	Return the positive square-root of an array, element-wise.

See also

numpy.sqrt

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.square

	
NtuplesBaseUFuncs.square(out=None)

	Return the element-wise square of the input.

See also

numpy.square

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.subtract

	
NtuplesBaseUFuncs.subtract(x2, out=None)

	Subtract arguments, element-wise.

See also

numpy.subtract

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.sum

	
NtuplesBaseUFuncs.sum()

	Sum of array elements.

See also

numpy.sum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.tan

	
NtuplesBaseUFuncs.tan(out=None)

	Compute tangent element-wise.

See also

numpy.tan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.tanh

	
NtuplesBaseUFuncs.tanh(out=None)

	Compute hyperbolic tangent element-wise.

See also

numpy.tanh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.true_divide

	
NtuplesBaseUFuncs.true_divide(x2, out=None)

	Returns a true division of the inputs, element-wise.

See also

numpy.true_divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesBaseUFuncs

NtuplesBaseUFuncs.trunc

	
NtuplesBaseUFuncs.trunc(out=None)

	Return the truncated value of the input, element-wise.

See also

numpy.trunc

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

NtuplesUFuncs

	
class odl.util.ufuncs.NtuplesUFuncs(vector)

	Bases: odl.util.ufuncs.NtuplesBaseUFuncs

UFuncs for NtuplesVector objects.

Internal object, should not be created except in NtuplesVector.

Methods

	__eq__
	Return self==value.

	absolute([out])
	Calculate the absolute value element-wise.

	add(x2[,out])
	Add arguments element-wise.

	arccos([out])
	Trigonometric inverse cosine, element-wise.

	arccosh([out])
	Inverse hyperbolic cosine, element-wise.

	arcsin([out])
	Inverse sine, element-wise.

	arcsinh([out])
	Inverse hyperbolic sine element-wise.

	arctan([out])
	Trigonometric inverse tangent, element-wise.

	arctan2(x2[,out])
	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

	arctanh([out])
	Inverse hyperbolic tangent element-wise.

	bitwise_and(x2[,out])
	Compute the bit-wise AND of two arrays element-wise.

	bitwise_or(x2[,out])
	Compute the bit-wise OR of two arrays element-wise.

	bitwise_xor(x2[,out])
	Compute the bit-wise XOR of two arrays element-wise.

	ceil([out])
	Return the ceiling of the input, element-wise.

	conj([out])
	Return the complex conjugate, element-wise.

	copysign(x2[,out])
	Change the sign of x1 to that of x2, element-wise.

	cos([out])
	Cosine element-wise.

	cosh([out])
	Hyperbolic cosine, element-wise.

	deg2rad([out])
	Convert angles from degrees to radians.

	divide(x2[,out])
	Returns a true division of the inputs, element-wise.

	equal(x2[,out])
	Return (x1 == x2) element-wise.

	exp([out])
	Calculate the exponential of all elements in the input array.

	exp2([out])
	Calculate 2**p for all p in the input array.

	expm1([out])
	Calculate exp(x) - 1 for all elements in the array.

	floor([out])
	Return the floor of the input, element-wise.

	floor_divide(x2[,out])
	Return the largest integer smaller or equal to the division of the

	fmax(x2[,out])
	Element-wise maximum of array elements.

	fmin(x2[,out])
	Element-wise minimum of array elements.

	fmod(x2[,out])
	Return the element-wise remainder of division.

	greater(x2[,out])
	Return the truth value of (x1 > x2) element-wise.

	greater_equal(x2[,out])
	Return the truth value of (x1 >= x2) element-wise.

	hypot(x2[,out])
	Given the “legs” of a right triangle, return its hypotenuse.

	invert([out])
	Compute bit-wise inversion, or bit-wise NOT, element-wise.

	isfinite([out])
	Test element-wise for finiteness (not infinity or not Not a Number).

	isinf([out])
	Test element-wise for positive or negative infinity.

	isnan([out])
	Test element-wise for NaN and return result as a boolean array.

	left_shift(x2[,out])
	Shift the bits of an integer to the left.

	less(x2[,out])
	Return the truth value of (x1 < x2) element-wise.

	less_equal(x2[,out])
	Return the truth value of (x1 =< x2) element-wise.

	log([out])
	Natural logarithm, element-wise.

	log10([out])
	Return the base 10 logarithm of the input array, element-wise.

	log1p([out])
	Return the natural logarithm of one plus the input array, element-wise.

	log2([out])
	Base-2 logarithm of x.

	logaddexp(x2[,out])
	Logarithm of the sum of exponentiations of the inputs.

	logaddexp2(x2[,out])
	Logarithm of the sum of exponentiations of the inputs in base-2.

	logical_and(x2[,out])
	Compute the truth value of x1 AND x2 element-wise.

	logical_not([out])
	Compute the truth value of NOT x element-wise.

	logical_or(x2[,out])
	Compute the truth value of x1 OR x2 element-wise.

	logical_xor(x2[,out])
	Compute the truth value of x1 XOR x2, element-wise.

	max()
	Maximum value in array.

	maximum(x2[,out])
	Element-wise maximum of array elements.

	min()
	Minimum value in array.

	minimum(x2[,out])
	Element-wise minimum of array elements.

	mod(x2[,out])
	Return element-wise remainder of division.

	modf([out1,out2])
	Return the fractional and integral parts of an array, element-wise.

	multiply(x2[,out])
	Multiply arguments element-wise.

	negative([out])
	Numerical negative, element-wise.

	not_equal(x2[,out])
	Return (x1 != x2) element-wise.

	power(x2[,out])
	First array elements raised to powers from second array, element-wise.

	prod()
	Product of array elements.

	rad2deg([out])
	Convert angles from radians to degrees.

	reciprocal([out])
	Return the reciprocal of the argument, element-wise.

	remainder(x2[,out])
	Return element-wise remainder of division.

	right_shift(x2[,out])
	Shift the bits of an integer to the right.

	rint([out])
	Round elements of the array to the nearest integer.

	sign([out])
	Returns an element-wise indication of the sign of a number.

	signbit([out])
	Returns element-wise True where signbit is set (less than zero).

	sin([out])
	Trigonometric sine, element-wise.

	sinh([out])
	Hyperbolic sine, element-wise.

	sqrt([out])
	Return the positive square-root of an array, element-wise.

	square([out])
	Return the element-wise square of the input.

	subtract(x2[,out])
	Subtract arguments, element-wise.

	sum()
	Sum of array elements.

	tan([out])
	Compute tangent element-wise.

	tanh([out])
	Compute hyperbolic tangent element-wise.

	true_divide(x2[,out])
	Returns a true division of the inputs, element-wise.

	trunc([out])
	Return the truncated value of the input, element-wise.

	
__init__(vector)

	Create ufunc wrapper for vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.absolute

	
NtuplesUFuncs.absolute(out=None)

	Calculate the absolute value element-wise.

See also

numpy.absolute

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.add

	
NtuplesUFuncs.add(x2, out=None)

	Add arguments element-wise.

See also

numpy.add

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.arccos

	
NtuplesUFuncs.arccos(out=None)

	Trigonometric inverse cosine, element-wise.

See also

numpy.arccos

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.arccosh

	
NtuplesUFuncs.arccosh(out=None)

	Inverse hyperbolic cosine, element-wise.

See also

numpy.arccosh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.arcsin

	
NtuplesUFuncs.arcsin(out=None)

	Inverse sine, element-wise.

See also

numpy.arcsin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.arcsinh

	
NtuplesUFuncs.arcsinh(out=None)

	Inverse hyperbolic sine element-wise.

See also

numpy.arcsinh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.arctan

	
NtuplesUFuncs.arctan(out=None)

	Trigonometric inverse tangent, element-wise.

See also

numpy.arctan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.arctan2

	
NtuplesUFuncs.arctan2(x2, out=None)

	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

See also

numpy.arctan2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.arctanh

	
NtuplesUFuncs.arctanh(out=None)

	Inverse hyperbolic tangent element-wise.

See also

numpy.arctanh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.bitwise_and

	
NtuplesUFuncs.bitwise_and(x2, out=None)

	Compute the bit-wise AND of two arrays element-wise.

See also

numpy.bitwise_and

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.bitwise_or

	
NtuplesUFuncs.bitwise_or(x2, out=None)

	Compute the bit-wise OR of two arrays element-wise.

See also

numpy.bitwise_or

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.bitwise_xor

	
NtuplesUFuncs.bitwise_xor(x2, out=None)

	Compute the bit-wise XOR of two arrays element-wise.

See also

numpy.bitwise_xor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.ceil

	
NtuplesUFuncs.ceil(out=None)

	Return the ceiling of the input, element-wise.

See also

numpy.ceil

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.conj

	
NtuplesUFuncs.conj(out=None)

	Return the complex conjugate, element-wise.

See also

numpy.conj

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.copysign

	
NtuplesUFuncs.copysign(x2, out=None)

	Change the sign of x1 to that of x2, element-wise.

See also

numpy.copysign

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.cos

	
NtuplesUFuncs.cos(out=None)

	Cosine element-wise.

See also

numpy.cos

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.cosh

	
NtuplesUFuncs.cosh(out=None)

	Hyperbolic cosine, element-wise.

See also

numpy.cosh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.deg2rad

	
NtuplesUFuncs.deg2rad(out=None)

	Convert angles from degrees to radians.

See also

numpy.deg2rad

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.divide

	
NtuplesUFuncs.divide(x2, out=None)

	Returns a true division of the inputs, element-wise.

See also

numpy.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.equal

	
NtuplesUFuncs.equal(x2, out=None)

	Return (x1 == x2) element-wise.

See also

numpy.equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.exp

	
NtuplesUFuncs.exp(out=None)

	Calculate the exponential of all elements in the input array.

See also

numpy.exp

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.exp2

	
NtuplesUFuncs.exp2(out=None)

	Calculate 2**p for all p in the input array.

See also

numpy.exp2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.expm1

	
NtuplesUFuncs.expm1(out=None)

	Calculate exp(x) - 1 for all elements in the array.

See also

numpy.expm1

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.floor

	
NtuplesUFuncs.floor(out=None)

	Return the floor of the input, element-wise.

See also

numpy.floor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.floor_divide

	
NtuplesUFuncs.floor_divide(x2, out=None)

	Return the largest integer smaller or equal to the division of the

See also

numpy.floor_divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.fmax

	
NtuplesUFuncs.fmax(x2, out=None)

	Element-wise maximum of array elements.

See also

numpy.fmax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.fmin

	
NtuplesUFuncs.fmin(x2, out=None)

	Element-wise minimum of array elements.

See also

numpy.fmin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.fmod

	
NtuplesUFuncs.fmod(x2, out=None)

	Return the element-wise remainder of division.

See also

numpy.fmod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.greater

	
NtuplesUFuncs.greater(x2, out=None)

	Return the truth value of (x1 > x2) element-wise.

See also

numpy.greater

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.greater_equal

	
NtuplesUFuncs.greater_equal(x2, out=None)

	Return the truth value of (x1 >= x2) element-wise.

See also

numpy.greater_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.hypot

	
NtuplesUFuncs.hypot(x2, out=None)

	Given the “legs” of a right triangle, return its hypotenuse.

See also

numpy.hypot

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.invert

	
NtuplesUFuncs.invert(out=None)

	Compute bit-wise inversion, or bit-wise NOT, element-wise.

See also

numpy.invert

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.isfinite

	
NtuplesUFuncs.isfinite(out=None)

	Test element-wise for finiteness (not infinity or not Not a Number).

See also

numpy.isfinite

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.isinf

	
NtuplesUFuncs.isinf(out=None)

	Test element-wise for positive or negative infinity.

See also

numpy.isinf

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.isnan

	
NtuplesUFuncs.isnan(out=None)

	Test element-wise for NaN and return result as a boolean array.

See also

numpy.isnan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.left_shift

	
NtuplesUFuncs.left_shift(x2, out=None)

	Shift the bits of an integer to the left.

See also

numpy.left_shift

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.less

	
NtuplesUFuncs.less(x2, out=None)

	Return the truth value of (x1 < x2) element-wise.

See also

numpy.less

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.less_equal

	
NtuplesUFuncs.less_equal(x2, out=None)

	Return the truth value of (x1 =< x2) element-wise.

See also

numpy.less_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.log

	
NtuplesUFuncs.log(out=None)

	Natural logarithm, element-wise.

See also

numpy.log

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.log10

	
NtuplesUFuncs.log10(out=None)

	Return the base 10 logarithm of the input array, element-wise.

See also

numpy.log10

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.log1p

	
NtuplesUFuncs.log1p(out=None)

	Return the natural logarithm of one plus the input array, element-wise.

See also

numpy.log1p

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.log2

	
NtuplesUFuncs.log2(out=None)

	Base-2 logarithm of x.

See also

numpy.log2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.logaddexp

	
NtuplesUFuncs.logaddexp(x2, out=None)

	Logarithm of the sum of exponentiations of the inputs.

See also

numpy.logaddexp

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.logaddexp2

	
NtuplesUFuncs.logaddexp2(x2, out=None)

	Logarithm of the sum of exponentiations of the inputs in base-2.

See also

numpy.logaddexp2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.logical_and

	
NtuplesUFuncs.logical_and(x2, out=None)

	Compute the truth value of x1 AND x2 element-wise.

See also

numpy.logical_and

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.logical_not

	
NtuplesUFuncs.logical_not(out=None)

	Compute the truth value of NOT x element-wise.

See also

numpy.logical_not

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.logical_or

	
NtuplesUFuncs.logical_or(x2, out=None)

	Compute the truth value of x1 OR x2 element-wise.

See also

numpy.logical_or

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.logical_xor

	
NtuplesUFuncs.logical_xor(x2, out=None)

	Compute the truth value of x1 XOR x2, element-wise.

See also

numpy.logical_xor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.max

	
NtuplesUFuncs.max()

	Maximum value in array.

See also

numpy.amax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.maximum

	
NtuplesUFuncs.maximum(x2, out=None)

	Element-wise maximum of array elements.

See also

numpy.maximum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.min

	
NtuplesUFuncs.min()

	Minimum value in array.

See also

numpy.amin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.minimum

	
NtuplesUFuncs.minimum(x2, out=None)

	Element-wise minimum of array elements.

See also

numpy.minimum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.mod

	
NtuplesUFuncs.mod(x2, out=None)

	Return element-wise remainder of division.

See also

numpy.mod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.modf

	
NtuplesUFuncs.modf(out1=None, out2=None)

	Return the fractional and integral parts of an array, element-wise.

See also

numpy.modf

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.multiply

	
NtuplesUFuncs.multiply(x2, out=None)

	Multiply arguments element-wise.

See also

numpy.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.negative

	
NtuplesUFuncs.negative(out=None)

	Numerical negative, element-wise.

See also

numpy.negative

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.not_equal

	
NtuplesUFuncs.not_equal(x2, out=None)

	Return (x1 != x2) element-wise.

See also

numpy.not_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.power

	
NtuplesUFuncs.power(x2, out=None)

	First array elements raised to powers from second array, element-wise.

See also

numpy.power

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.prod

	
NtuplesUFuncs.prod()

	Product of array elements.

See also

numpy.prod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.rad2deg

	
NtuplesUFuncs.rad2deg(out=None)

	Convert angles from radians to degrees.

See also

numpy.rad2deg

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.reciprocal

	
NtuplesUFuncs.reciprocal(out=None)

	Return the reciprocal of the argument, element-wise.

See also

numpy.reciprocal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.remainder

	
NtuplesUFuncs.remainder(x2, out=None)

	Return element-wise remainder of division.

See also

numpy.remainder

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.right_shift

	
NtuplesUFuncs.right_shift(x2, out=None)

	Shift the bits of an integer to the right.

See also

numpy.right_shift

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.rint

	
NtuplesUFuncs.rint(out=None)

	Round elements of the array to the nearest integer.

See also

numpy.rint

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.sign

	
NtuplesUFuncs.sign(out=None)

	Returns an element-wise indication of the sign of a number.

See also

numpy.sign

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.signbit

	
NtuplesUFuncs.signbit(out=None)

	Returns element-wise True where signbit is set (less than zero).

See also

numpy.signbit

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.sin

	
NtuplesUFuncs.sin(out=None)

	Trigonometric sine, element-wise.

See also

numpy.sin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.sinh

	
NtuplesUFuncs.sinh(out=None)

	Hyperbolic sine, element-wise.

See also

numpy.sinh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.sqrt

	
NtuplesUFuncs.sqrt(out=None)

	Return the positive square-root of an array, element-wise.

See also

numpy.sqrt

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.square

	
NtuplesUFuncs.square(out=None)

	Return the element-wise square of the input.

See also

numpy.square

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.subtract

	
NtuplesUFuncs.subtract(x2, out=None)

	Subtract arguments, element-wise.

See also

numpy.subtract

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.sum

	
NtuplesUFuncs.sum()

	Sum of array elements.

See also

numpy.sum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.tan

	
NtuplesUFuncs.tan(out=None)

	Compute tangent element-wise.

See also

numpy.tan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.tanh

	
NtuplesUFuncs.tanh(out=None)

	Compute hyperbolic tangent element-wise.

See also

numpy.tanh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.true_divide

	
NtuplesUFuncs.true_divide(x2, out=None)

	Returns a true division of the inputs, element-wise.

See also

numpy.true_divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	NtuplesUFuncs

NtuplesUFuncs.trunc

	
NtuplesUFuncs.trunc(out=None)

	Return the truncated value of the input, element-wise.

See also

numpy.trunc

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

ProductSpaceUFuncs

	
class odl.util.ufuncs.ProductSpaceUFuncs(vector)

	Bases: object

UFuncs for ProductSpaceVector objects.

Internal object, should not be created except in ProductSpaceVector.

Methods

	__eq__
	Return self==value.

	absolute([out])
	Calculate the absolute value element-wise.

	add(x2[,out])
	Add arguments element-wise.

	arccos([out])
	Trigonometric inverse cosine, element-wise.

	arccosh([out])
	Inverse hyperbolic cosine, element-wise.

	arcsin([out])
	Inverse sine, element-wise.

	arcsinh([out])
	Inverse hyperbolic sine element-wise.

	arctan([out])
	Trigonometric inverse tangent, element-wise.

	arctan2(x2[,out])
	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

	arctanh([out])
	Inverse hyperbolic tangent element-wise.

	bitwise_and(x2[,out])
	Compute the bit-wise AND of two arrays element-wise.

	bitwise_or(x2[,out])
	Compute the bit-wise OR of two arrays element-wise.

	bitwise_xor(x2[,out])
	Compute the bit-wise XOR of two arrays element-wise.

	ceil([out])
	Return the ceiling of the input, element-wise.

	conj([out])
	Return the complex conjugate, element-wise.

	copysign(x2[,out])
	Change the sign of x1 to that of x2, element-wise.

	cos([out])
	Cosine element-wise.

	cosh([out])
	Hyperbolic cosine, element-wise.

	deg2rad([out])
	Convert angles from degrees to radians.

	divide(x2[,out])
	Returns a true division of the inputs, element-wise.

	equal(x2[,out])
	Return (x1 == x2) element-wise.

	exp([out])
	Calculate the exponential of all elements in the input array.

	exp2([out])
	Calculate 2**p for all p in the input array.

	expm1([out])
	Calculate exp(x) - 1 for all elements in the array.

	floor([out])
	Return the floor of the input, element-wise.

	floor_divide(x2[,out])
	Return the largest integer smaller or equal to the division of the

	fmax(x2[,out])
	Element-wise maximum of array elements.

	fmin(x2[,out])
	Element-wise minimum of array elements.

	fmod(x2[,out])
	Return the element-wise remainder of division.

	greater(x2[,out])
	Return the truth value of (x1 > x2) element-wise.

	greater_equal(x2[,out])
	Return the truth value of (x1 >= x2) element-wise.

	hypot(x2[,out])
	Given the “legs” of a right triangle, return its hypotenuse.

	invert([out])
	Compute bit-wise inversion, or bit-wise NOT, element-wise.

	isfinite([out])
	Test element-wise for finiteness (not infinity or not Not a Number).

	isinf([out])
	Test element-wise for positive or negative infinity.

	isnan([out])
	Test element-wise for NaN and return result as a boolean array.

	left_shift(x2[,out])
	Shift the bits of an integer to the left.

	less(x2[,out])
	Return the truth value of (x1 < x2) element-wise.

	less_equal(x2[,out])
	Return the truth value of (x1 =< x2) element-wise.

	log([out])
	Natural logarithm, element-wise.

	log10([out])
	Return the base 10 logarithm of the input array, element-wise.

	log1p([out])
	Return the natural logarithm of one plus the input array, element-wise.

	log2([out])
	Base-2 logarithm of x.

	logaddexp(x2[,out])
	Logarithm of the sum of exponentiations of the inputs.

	logaddexp2(x2[,out])
	Logarithm of the sum of exponentiations of the inputs in base-2.

	logical_and(x2[,out])
	Compute the truth value of x1 AND x2 element-wise.

	logical_not([out])
	Compute the truth value of NOT x element-wise.

	logical_or(x2[,out])
	Compute the truth value of x1 OR x2 element-wise.

	logical_xor(x2[,out])
	Compute the truth value of x1 XOR x2, element-wise.

	max()
	Maximum value in array.

	maximum(x2[,out])
	Element-wise maximum of array elements.

	min()
	Minimum value in array.

	minimum(x2[,out])
	Element-wise minimum of array elements.

	mod(x2[,out])
	Return element-wise remainder of division.

	modf([out1,out2])
	Return the fractional and integral parts of an array, element-wise.

	multiply(x2[,out])
	Multiply arguments element-wise.

	negative([out])
	Numerical negative, element-wise.

	not_equal(x2[,out])
	Return (x1 != x2) element-wise.

	power(x2[,out])
	First array elements raised to powers from second array, element-wise.

	prod()
	Product of array elements.

	rad2deg([out])
	Convert angles from radians to degrees.

	reciprocal([out])
	Return the reciprocal of the argument, element-wise.

	remainder(x2[,out])
	Return element-wise remainder of division.

	right_shift(x2[,out])
	Shift the bits of an integer to the right.

	rint([out])
	Round elements of the array to the nearest integer.

	sign([out])
	Returns an element-wise indication of the sign of a number.

	signbit([out])
	Returns element-wise True where signbit is set (less than zero).

	sin([out])
	Trigonometric sine, element-wise.

	sinh([out])
	Hyperbolic sine, element-wise.

	sqrt([out])
	Return the positive square-root of an array, element-wise.

	square([out])
	Return the element-wise square of the input.

	subtract(x2[,out])
	Subtract arguments, element-wise.

	sum()
	Sum of array elements.

	tan([out])
	Compute tangent element-wise.

	tanh([out])
	Compute hyperbolic tangent element-wise.

	true_divide(x2[,out])
	Returns a true division of the inputs, element-wise.

	trunc([out])
	Return the truncated value of the input, element-wise.

	
__init__(vector)

	Create ufunc wrapper for vector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.absolute

	
ProductSpaceUFuncs.absolute(out=None)

	Calculate the absolute value element-wise.

See also

numpy.absolute

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.add

	
ProductSpaceUFuncs.add(x2, out=None)

	Add arguments element-wise.

See also

numpy.add

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.arccos

	
ProductSpaceUFuncs.arccos(out=None)

	Trigonometric inverse cosine, element-wise.

See also

numpy.arccos

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.arccosh

	
ProductSpaceUFuncs.arccosh(out=None)

	Inverse hyperbolic cosine, element-wise.

See also

numpy.arccosh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.arcsin

	
ProductSpaceUFuncs.arcsin(out=None)

	Inverse sine, element-wise.

See also

numpy.arcsin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.arcsinh

	
ProductSpaceUFuncs.arcsinh(out=None)

	Inverse hyperbolic sine element-wise.

See also

numpy.arcsinh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.arctan

	
ProductSpaceUFuncs.arctan(out=None)

	Trigonometric inverse tangent, element-wise.

See also

numpy.arctan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.arctan2

	
ProductSpaceUFuncs.arctan2(x2, out=None)

	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

See also

numpy.arctan2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.arctanh

	
ProductSpaceUFuncs.arctanh(out=None)

	Inverse hyperbolic tangent element-wise.

See also

numpy.arctanh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.bitwise_and

	
ProductSpaceUFuncs.bitwise_and(x2, out=None)

	Compute the bit-wise AND of two arrays element-wise.

See also

numpy.bitwise_and

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.bitwise_or

	
ProductSpaceUFuncs.bitwise_or(x2, out=None)

	Compute the bit-wise OR of two arrays element-wise.

See also

numpy.bitwise_or

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.bitwise_xor

	
ProductSpaceUFuncs.bitwise_xor(x2, out=None)

	Compute the bit-wise XOR of two arrays element-wise.

See also

numpy.bitwise_xor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.ceil

	
ProductSpaceUFuncs.ceil(out=None)

	Return the ceiling of the input, element-wise.

See also

numpy.ceil

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.conj

	
ProductSpaceUFuncs.conj(out=None)

	Return the complex conjugate, element-wise.

See also

numpy.conj

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.copysign

	
ProductSpaceUFuncs.copysign(x2, out=None)

	Change the sign of x1 to that of x2, element-wise.

See also

numpy.copysign

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.cos

	
ProductSpaceUFuncs.cos(out=None)

	Cosine element-wise.

See also

numpy.cos

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.cosh

	
ProductSpaceUFuncs.cosh(out=None)

	Hyperbolic cosine, element-wise.

See also

numpy.cosh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.deg2rad

	
ProductSpaceUFuncs.deg2rad(out=None)

	Convert angles from degrees to radians.

See also

numpy.deg2rad

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.divide

	
ProductSpaceUFuncs.divide(x2, out=None)

	Returns a true division of the inputs, element-wise.

See also

numpy.divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.equal

	
ProductSpaceUFuncs.equal(x2, out=None)

	Return (x1 == x2) element-wise.

See also

numpy.equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.exp

	
ProductSpaceUFuncs.exp(out=None)

	Calculate the exponential of all elements in the input array.

See also

numpy.exp

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.exp2

	
ProductSpaceUFuncs.exp2(out=None)

	Calculate 2**p for all p in the input array.

See also

numpy.exp2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.expm1

	
ProductSpaceUFuncs.expm1(out=None)

	Calculate exp(x) - 1 for all elements in the array.

See also

numpy.expm1

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.floor

	
ProductSpaceUFuncs.floor(out=None)

	Return the floor of the input, element-wise.

See also

numpy.floor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.floor_divide

	
ProductSpaceUFuncs.floor_divide(x2, out=None)

	Return the largest integer smaller or equal to the division of the

See also

numpy.floor_divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.fmax

	
ProductSpaceUFuncs.fmax(x2, out=None)

	Element-wise maximum of array elements.

See also

numpy.fmax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.fmin

	
ProductSpaceUFuncs.fmin(x2, out=None)

	Element-wise minimum of array elements.

See also

numpy.fmin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.fmod

	
ProductSpaceUFuncs.fmod(x2, out=None)

	Return the element-wise remainder of division.

See also

numpy.fmod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.greater

	
ProductSpaceUFuncs.greater(x2, out=None)

	Return the truth value of (x1 > x2) element-wise.

See also

numpy.greater

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.greater_equal

	
ProductSpaceUFuncs.greater_equal(x2, out=None)

	Return the truth value of (x1 >= x2) element-wise.

See also

numpy.greater_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.hypot

	
ProductSpaceUFuncs.hypot(x2, out=None)

	Given the “legs” of a right triangle, return its hypotenuse.

See also

numpy.hypot

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.invert

	
ProductSpaceUFuncs.invert(out=None)

	Compute bit-wise inversion, or bit-wise NOT, element-wise.

See also

numpy.invert

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.isfinite

	
ProductSpaceUFuncs.isfinite(out=None)

	Test element-wise for finiteness (not infinity or not Not a Number).

See also

numpy.isfinite

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.isinf

	
ProductSpaceUFuncs.isinf(out=None)

	Test element-wise for positive or negative infinity.

See also

numpy.isinf

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.isnan

	
ProductSpaceUFuncs.isnan(out=None)

	Test element-wise for NaN and return result as a boolean array.

See also

numpy.isnan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.left_shift

	
ProductSpaceUFuncs.left_shift(x2, out=None)

	Shift the bits of an integer to the left.

See also

numpy.left_shift

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.less

	
ProductSpaceUFuncs.less(x2, out=None)

	Return the truth value of (x1 < x2) element-wise.

See also

numpy.less

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.less_equal

	
ProductSpaceUFuncs.less_equal(x2, out=None)

	Return the truth value of (x1 =< x2) element-wise.

See also

numpy.less_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.log

	
ProductSpaceUFuncs.log(out=None)

	Natural logarithm, element-wise.

See also

numpy.log

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.log10

	
ProductSpaceUFuncs.log10(out=None)

	Return the base 10 logarithm of the input array, element-wise.

See also

numpy.log10

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.log1p

	
ProductSpaceUFuncs.log1p(out=None)

	Return the natural logarithm of one plus the input array, element-wise.

See also

numpy.log1p

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.log2

	
ProductSpaceUFuncs.log2(out=None)

	Base-2 logarithm of x.

See also

numpy.log2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.logaddexp

	
ProductSpaceUFuncs.logaddexp(x2, out=None)

	Logarithm of the sum of exponentiations of the inputs.

See also

numpy.logaddexp

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.logaddexp2

	
ProductSpaceUFuncs.logaddexp2(x2, out=None)

	Logarithm of the sum of exponentiations of the inputs in base-2.

See also

numpy.logaddexp2

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.logical_and

	
ProductSpaceUFuncs.logical_and(x2, out=None)

	Compute the truth value of x1 AND x2 element-wise.

See also

numpy.logical_and

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.logical_not

	
ProductSpaceUFuncs.logical_not(out=None)

	Compute the truth value of NOT x element-wise.

See also

numpy.logical_not

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.logical_or

	
ProductSpaceUFuncs.logical_or(x2, out=None)

	Compute the truth value of x1 OR x2 element-wise.

See also

numpy.logical_or

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.logical_xor

	
ProductSpaceUFuncs.logical_xor(x2, out=None)

	Compute the truth value of x1 XOR x2, element-wise.

See also

numpy.logical_xor

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.max

	
ProductSpaceUFuncs.max()

	Maximum value in array.

See also

numpy.amax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.maximum

	
ProductSpaceUFuncs.maximum(x2, out=None)

	Element-wise maximum of array elements.

See also

numpy.maximum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.min

	
ProductSpaceUFuncs.min()

	Minimum value in array.

See also

numpy.amin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.minimum

	
ProductSpaceUFuncs.minimum(x2, out=None)

	Element-wise minimum of array elements.

See also

numpy.minimum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.mod

	
ProductSpaceUFuncs.mod(x2, out=None)

	Return element-wise remainder of division.

See also

numpy.mod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.modf

	
ProductSpaceUFuncs.modf(out1=None, out2=None)

	Return the fractional and integral parts of an array, element-wise.

See also

numpy.modf

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.multiply

	
ProductSpaceUFuncs.multiply(x2, out=None)

	Multiply arguments element-wise.

See also

numpy.multiply

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.negative

	
ProductSpaceUFuncs.negative(out=None)

	Numerical negative, element-wise.

See also

numpy.negative

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.not_equal

	
ProductSpaceUFuncs.not_equal(x2, out=None)

	Return (x1 != x2) element-wise.

See also

numpy.not_equal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.power

	
ProductSpaceUFuncs.power(x2, out=None)

	First array elements raised to powers from second array, element-wise.

See also

numpy.power

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.prod

	
ProductSpaceUFuncs.prod()

	Product of array elements.

See also

numpy.prod

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.rad2deg

	
ProductSpaceUFuncs.rad2deg(out=None)

	Convert angles from radians to degrees.

See also

numpy.rad2deg

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.reciprocal

	
ProductSpaceUFuncs.reciprocal(out=None)

	Return the reciprocal of the argument, element-wise.

See also

numpy.reciprocal

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.remainder

	
ProductSpaceUFuncs.remainder(x2, out=None)

	Return element-wise remainder of division.

See also

numpy.remainder

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.right_shift

	
ProductSpaceUFuncs.right_shift(x2, out=None)

	Shift the bits of an integer to the right.

See also

numpy.right_shift

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.rint

	
ProductSpaceUFuncs.rint(out=None)

	Round elements of the array to the nearest integer.

See also

numpy.rint

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.sign

	
ProductSpaceUFuncs.sign(out=None)

	Returns an element-wise indication of the sign of a number.

See also

numpy.sign

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.signbit

	
ProductSpaceUFuncs.signbit(out=None)

	Returns element-wise True where signbit is set (less than zero).

See also

numpy.signbit

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.sin

	
ProductSpaceUFuncs.sin(out=None)

	Trigonometric sine, element-wise.

See also

numpy.sin

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.sinh

	
ProductSpaceUFuncs.sinh(out=None)

	Hyperbolic sine, element-wise.

See also

numpy.sinh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.sqrt

	
ProductSpaceUFuncs.sqrt(out=None)

	Return the positive square-root of an array, element-wise.

See also

numpy.sqrt

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.square

	
ProductSpaceUFuncs.square(out=None)

	Return the element-wise square of the input.

See also

numpy.square

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.subtract

	
ProductSpaceUFuncs.subtract(x2, out=None)

	Subtract arguments, element-wise.

See also

numpy.subtract

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.sum

	
ProductSpaceUFuncs.sum()

	Sum of array elements.

See also

numpy.sum

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.tan

	
ProductSpaceUFuncs.tan(out=None)

	Compute tangent element-wise.

See also

numpy.tan

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.tanh

	
ProductSpaceUFuncs.tanh(out=None)

	Compute hyperbolic tangent element-wise.

See also

numpy.tanh

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.true_divide

	
ProductSpaceUFuncs.true_divide(x2, out=None)

	Returns a true division of the inputs, element-wise.

See also

numpy.true_divide

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

 	ProductSpaceUFuncs

ProductSpaceUFuncs.trunc

	
ProductSpaceUFuncs.trunc(out=None)

	Return the truncated value of the input, element-wise.

See also

numpy.trunc

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

method

	
odl.util.ufuncs.method(self)

	Maximum value in array.

See also

numpy.amax

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

wrap_reduction_base

	
odl.util.ufuncs.wrap_reduction_base(name, doc)

	Add ufunc methods to NtuplesBaseUFuncs.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

wrap_reduction_discretelp

	
odl.util.ufuncs.wrap_reduction_discretelp(name, doc)

	

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

wrap_reduction_productspace

	
odl.util.ufuncs.wrap_reduction_productspace(name, doc)

	Add reduction methods to ProductSpaceVector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

wrap_ufunc_base

	
odl.util.ufuncs.wrap_ufunc_base(name, n_in, n_out, doc)

	Add ufunc methods to NtuplesBaseUFuncs.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

wrap_ufunc_discretelp

	
odl.util.ufuncs.wrap_ufunc_discretelp(name, n_in, n_out, doc)

	Add ufunc methods to DiscreteLpUFuncs.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

wrap_ufunc_ntuples

	
odl.util.ufuncs.wrap_ufunc_ntuples(name, n_in, n_out, doc)

	Add ufunc methods to NtuplesUFuncs.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	ufuncs

wrap_ufunc_productspace

	
odl.util.ufuncs.wrap_ufunc_productspace(name, n_in, n_out, doc)

	Add ufunc methods to ProductSpaceVector.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

utility

Utilities for internal use.

Functions

	array1d_repr(array[,nprint])
	Stringification of a 1D array, keeping byte / unicode.

	array1d_str(array[,nprint])
	Stringification of a 1D array, regardless of byte or unicode.

	arraynd_repr(array[,nprint])
	Stringification of an nD array, keeping byte / unicode.

	arraynd_str(array[,nprint])
	Stringification of an nD array, regardless of byte or unicode.

	conj_exponent(exp)
	The conjugate exponent p / (p-1).

	dtype_repr(dtype)
	Stringification of data type with default for int and float.

	is_complex_floating_dtype(dtype)
	True if dtype is complex floating-point, else False.

	is_floating_dtype(dtype)
	True if dtype is floating-point, else False.

	is_int_dtype(dtype)
	True if dtype is integer, else False.

	is_real_dtype(dtype)
	True if dtype is real (including integer), else False.

	is_real_floating_dtype(dtype)
	True if dtype is real floating-point, else False.

	is_scalar_dtype(dtype)
	True if dtype is scalar, else False.

	preload_first_arg(instance,mode)
	Decorator to preload the first argument of a call method.

	with_metaclass(meta,*bases)
	Function from jinja2/_compat.py.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

array1d_repr

	
odl.util.utility.array1d_repr(array, nprint=6)

	Stringification of a 1D array, keeping byte / unicode.

	Parameters:	array : array-like

The array to print

nprint : int

Maximum number of elements to print

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

array1d_str

	
odl.util.utility.array1d_str(array, nprint=6)

	Stringification of a 1D array, regardless of byte or unicode.

	Parameters:	array : array-like

The array to print

nprint : int

Maximum number of elements to print

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

arraynd_repr

	
odl.util.utility.arraynd_repr(array, nprint=None)

	Stringification of an nD array, keeping byte / unicode.

	Parameters:	array : array-like

The array to print

nprint : int

Maximum number of elements to print.
Default: 6 if array.ndim <= 2, else 2

Examples

>>> print(arraynd_repr([[1, 2, 3], [4, 5, 6]]))
[[1, 2, 3],
 [4, 5, 6]]
>>> print(arraynd_repr([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
[[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

arraynd_str

	
odl.util.utility.arraynd_str(array, nprint=None)

	Stringification of an nD array, regardless of byte or unicode.

	Parameters:	array : array-like

The array to print

nprint : int

Maximum number of elements to print.
Default: 6 if array.ndim <= 2, else 2

Examples

>>> print(arraynd_str([[1, 2, 3], [4, 5, 6]]))
[[1, 2, 3],
 [4, 5, 6]]
>>> print(arraynd_str([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
[[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

conj_exponent

	
odl.util.utility.conj_exponent(exp)

	The conjugate exponent p / (p-1).

	Parameters:	exp : positive float or inf

Exponent for which to calculate the conjugate. Must be
at least 1.0.

	Returns:	conj : positive float or inf

Conjugate exponent. For exp=1, return float('inf'),
for exp=float('inf') return 1. In all other cases, return
exp / (exp - 1).

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

dtype_repr

	
odl.util.utility.dtype_repr(dtype)

	Stringification of data type with default for int and float.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

is_complex_floating_dtype

	
odl.util.utility.is_complex_floating_dtype(dtype)

	True if dtype is complex floating-point, else False.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

is_floating_dtype

	
odl.util.utility.is_floating_dtype(dtype)

	True if dtype is floating-point, else False.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

is_int_dtype

	
odl.util.utility.is_int_dtype(dtype)

	True if dtype is integer, else False.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

is_real_dtype

	
odl.util.utility.is_real_dtype(dtype)

	True if dtype is real (including integer), else False.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

is_real_floating_dtype

	
odl.util.utility.is_real_floating_dtype(dtype)

	True if dtype is real floating-point, else False.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

is_scalar_dtype

	
odl.util.utility.is_scalar_dtype(dtype)

	True if dtype is scalar, else False.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

preload_first_arg

	
odl.util.utility.preload_first_arg(instance, mode)

	Decorator to preload the first argument of a call method.

	Parameters:	instance :

Class instance to preload the call with

mode : {‘out-of-place’, ‘in-place’}

‘out-of-place’: call is out-of-place – f(x, **kwargs)

‘in-place’: call is in-place – f(x, out, **kwargs)

Notes

The decorated function has the signature according to mode.

Examples

Define two functions which need some instance to act on and decorate
them manually:

>>> class A(object):
... '''My name is A.'''
>>> a = A()
...
>>> def f_oop(inst, x):
... print(inst.__doc__)
...
>>> def f_ip(inst, out, x):
... print(inst.__doc__)
...
>>> f_oop_new = preload_first_arg(a, 'out-of-place')(f_oop)
>>> f_ip_new = preload_first_arg(a, 'in-place')(f_ip)
...
>>> f_oop_new(0)
My name is A.
>>> f_ip_new(0, out=1)
My name is A.

Decorate upon definition:

>>> @preload_first_arg(a, 'out-of-place')
... def set_x(obj, x):
... '''Function to set x in ``obj`` to a given value.'''
... obj.x = x
>>> set_x(0)
>>> a.x
0

The function’s name and docstring are preserved:

>>> set_x.__name__
'set_x'
>>> set_x.__doc__
'Function to set x in ``obj`` to a given value.'

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	utility

with_metaclass

	
odl.util.utility.with_metaclass(meta, *bases)

	Function from jinja2/_compat.py. License: BSD.

Use it like this:

class BaseForm(object):
 pass

class FormType(type):
 pass

class Form(with_metaclass(FormType, BaseForm)):
 pass

This requires a bit of explanation: the basic idea is to make a
dummy metaclass for one level of class instantiation that replaces
itself with the actual metaclass. Because of internal type checks
we also need to make sure that we downgrade the custom metaclass
for one level to something closer to type (that’s why __call__ and
__init__ comes back from type etc.).

This has the advantage over six.with_metaclass of not introducing
dummy classes into the final MRO.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

vectorization

Utilities for internal functionality connected to vectorization.

Classes

	OptionalArgDecorator
	Abstract class to create decorators with optional arguments.

	vectorize
	Decorator class for function vectorization.

Functions

	is_valid_input_array(x[,ndim])
	Test if x is a correctly shaped point array in R^d.

	is_valid_input_meshgrid(x,ndim)
	Test if x is a meshgrid sequence for points in R^d.

	out_shape_from_array(arr)
	Get the output shape from an array.

	out_shape_from_meshgrid(mesh)
	Get the broadcast output shape from a meshgrid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	vectorization

OptionalArgDecorator

	
class odl.util.vectorization.OptionalArgDecorator

	Bases: object

Abstract class to create decorators with optional arguments.

This class implements the functionality of a decorator that can
be used with and without arguments, i.e. the following patterns
both work:

@decorator
def myfunc(x, *args, **kwargs):
 pass

@decorator(param, **dec_kwargs)
def myfunc(x, *args, **kwargs):
 pass

The arguments to the decorator are passed on to the underlying
wrapper.

To use this class, subclass it and implement the static _wrapper
method.

Methods

	__call__(func)
	Return self(func).

	__eq__
	Return self==value.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	vectorization

 	OptionalArgDecorator

OptionalArgDecorator.__call__

	
OptionalArgDecorator.__call__(func)

	Return self(func).

This method is invoked when the decorator was created with
arguments.

	Parameters:	func : callable

Original function to be wrapped

	Returns:	wrapped : callable

The wrapped function

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	util

 	vectorization

vectorize

	
class odl.util.vectorization.vectorize

	Bases: odl.util.vectorization.OptionalArgDecorator

Decorator class for function vectorization.

This vectorizer expects a function with exactly one positional
argument (input) and optional keyword arguments. The decorated
function has an optional out parameter for in-place evaluation.

Examples

Use the decorator witout arguments:

>>> @vectorize
... def f(x):
... return x[0] + x[1] if x[0] < x[1] else x[0] - x[1]
>>>
>>> f([0, 1]) # np.vectorize'd functions always return an array
array(1)
>>> f([[0, -2], [1, 4]]) # corresponds to points [0, 1], [-2, 4]
array([1, 2])

The function may have kwargs:

>>> @vectorize
... def f(x, param=1.0):
... return x[0] + x[1] if x[0] < param else x[0] - x[1]
>>>
>>> f([[0, -2], [1, 4]])
array([1, 2])
>>> f([[0, -2], [1, 4]], param=-1.0)
array([-1, 2])

You can pass arguments to the vectorizer, too:

>>> @vectorize(otypes=['float32'])
... def f(x):
... return x[0] + x[1] if x[0] < x[1] else x[0] - x[1]
>>> f([[0, -2], [1, 4]])
array([1., 2.], dtype=float32)

Methods

	__call__(func)
	Return self(func).

	__eq__
	Return self==value.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	vectorization

 	vectorize

vectorize.__call__

	
vectorize.__call__(func)

	Return self(func).

This method is invoked when the decorator was created with
arguments.

	Parameters:	func : callable

Original function to be wrapped

	Returns:	wrapped : callable

The wrapped function

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	odl

 	odl

 	util

 	vectorization

is_valid_input_array

	
odl.util.vectorization.is_valid_input_array(x, ndim=None)

	Test if x is a correctly shaped point array in R^d.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	vectorization

is_valid_input_meshgrid

	
odl.util.vectorization.is_valid_input_meshgrid(x, ndim)

	Test if x is a meshgrid sequence for points in R^d.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odl

 	odl

 	util

 	vectorization

out_shape_from_array

	
odl.util.vectorization.out_shape_from_array(arr)

	Get the output shape from an array.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	odl

 	odl

 	util

 	vectorization

out_shape_from_meshgrid

	
odl.util.vectorization.out_shape_from_meshgrid(mesh)

	Get the broadcast output shape from a meshgrid.

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	odl

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	

 	__call__() (odl.discr.discr_mappings.FunctionSetMapping method)

 	

 	(odl.discr.discr_mappings.LinearInterpolation method)

 	(odl.discr.discr_mappings.NearestInterpolation method)

 	(odl.discr.discr_mappings.PerAxisInterpolation method)

 	(odl.discr.discr_mappings.PointCollocation method)

 	(odl.discr.discr_ops.Divergence method)

 	(odl.discr.discr_ops.Gradient method)

 	(odl.discr.discr_ops.Laplacian method)

 	(odl.discr.discr_ops.PartialDerivative method)

 	(odl.operator.default_ops.ConstantOperator method)

 	(odl.operator.default_ops.IdentityOperator method)

 	(odl.operator.default_ops.InnerProductOperator method)

 	(odl.operator.default_ops.LinCombOperator method)

 	(odl.operator.default_ops.MultiplyOperator method)

 	(odl.operator.default_ops.ResidualOperator method)

 	(odl.operator.default_ops.ScalingOperator method)

 	(odl.operator.default_ops.ZeroOperator method)

 	(odl.operator.operator.FunctionalLeftVectorMult method)

 	(odl.operator.operator.Operator method)

 	(odl.operator.operator.OperatorComp method)

 	(odl.operator.operator.OperatorLeftScalarMult method)

 	(odl.operator.operator.OperatorLeftVectorMult method)

 	(odl.operator.operator.OperatorPointwiseProduct method)

 	(odl.operator.operator.OperatorRightScalarMult method)

 	(odl.operator.operator.OperatorRightVectorMult method)

 	(odl.operator.operator.OperatorSum method)

 	(odl.operator.pspace_ops.BroadcastOperator method)

 	(odl.operator.pspace_ops.ComponentProjection method)

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint method)

 	(odl.operator.pspace_ops.ProductSpaceOperator method)

 	(odl.operator.pspace_ops.ReductionOperator method)

 	(odl.solvers.scalar.steplen.BacktrackingLineSearch method)

 	(odl.solvers.scalar.steplen.BarzilaiBorweinStep method)

 	(odl.solvers.scalar.steplen.ConstantLineSearch method)

 	(odl.solvers.scalar.steplen.LineSearch method)

 	(odl.solvers.scalar.steplen.StepLength method)

 	(odl.solvers.util.partial.AndPartial method)

 	(odl.solvers.util.partial.ForEachPartial method)

 	(odl.solvers.util.partial.Partial method)

 	(odl.solvers.util.partial.PrintIterationPartial method)

 	(odl.solvers.util.partial.PrintNormPartial method)

 	(odl.solvers.util.partial.PrintTimingPartial method)

 	(odl.solvers.util.partial.ShowPartial method)

 	(odl.solvers.util.partial.StorePartial method)

 	(odl.space.fspace.FunctionSetVector method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.MatVecOperator method)

 	(odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper method)

 	(odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper method)

 	(odl.tomo.operators.ray_trafo.RayBackProjection method)

 	(odl.tomo.operators.ray_trafo.RayTransform method)

 	(odl.trafos.fourier.DiscreteFourierTransform method)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse method)

 	(odl.trafos.fourier.FourierTransform method)

 	(odl.trafos.fourier.FourierTransformInverse method)

 	(odl.trafos.wavelet.WaveletTransform method)

 	(odl.trafos.wavelet.WaveletTransformInverse method)

 	(odl.util.vectorization.OptionalArgDecorator method)

 	(odl.util.vectorization.vectorize method)

 	__contains__() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.discretization.RawDiscretization method)

 	(odl.discr.grid.RegularGrid method)

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.domain.IntervalProd method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.sets.CartesianProduct method)

 	(odl.set.sets.ComplexNumbers method)

 	(odl.set.sets.EmptySet method)

 	(odl.set.sets.Field method)

 	(odl.set.sets.Integers method)

 	(odl.set.sets.RealNumbers method)

 	(odl.set.sets.Set method)

 	(odl.set.sets.Strings method)

 	(odl.set.sets.UniversalSet method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.NtuplesBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaNtuples method)

 	(odl.space.fspace.FunctionSet method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.Ntuples method)

 	__eq__() (odl.discr.discr_mappings.FunctionSetMapping method)

 	

 	(odl.discr.discr_mappings.LinearInterpolation method)

 	(odl.discr.discr_mappings.NearestInterpolation method)

 	(odl.discr.discr_mappings.PerAxisInterpolation method)

 	(odl.discr.discr_mappings.PointCollocation method)

 	(odl.discr.discretization.Discretization method)

 	(odl.discr.discretization.DiscretizationVector method)

 	(odl.discr.discretization.RawDiscretization method)

 	(odl.discr.discretization.RawDiscretizationVector method)

 	(odl.discr.grid.RegularGrid method)

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.discr.partition.RectPartition method)

 	(odl.set.domain.IntervalProd method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.sets.CartesianProduct method)

 	(odl.set.sets.ComplexNumbers method)

 	(odl.set.sets.EmptySet method)

 	(odl.set.sets.Field method)

 	(odl.set.sets.Integers method)

 	(odl.set.sets.RealNumbers method)

 	(odl.set.sets.Set method)

 	(odl.set.sets.Strings method)

 	(odl.set.sets.UniversalSet method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.base_ntuples.FnWeightingBase method)

 	(odl.space.base_ntuples.NtuplesBase method)

 	(odl.space.base_ntuples.NtuplesBaseVector method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaFnConstWeighting method)

 	(odl.space.cu_ntuples.CudaFnCustomDist method)

 	(odl.space.cu_ntuples.CudaFnCustomInnerProduct method)

 	(odl.space.cu_ntuples.CudaFnCustomNorm method)

 	(odl.space.cu_ntuples.CudaFnNoWeighting method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaFnVectorWeighting method)

 	(odl.space.cu_ntuples.CudaNtuples method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSet method)

 	(odl.space.fspace.FunctionSetVector method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.FnConstWeighting method)

 	(odl.space.ntuples.FnCustomDist method)

 	(odl.space.ntuples.FnCustomInnerProduct method)

 	(odl.space.ntuples.FnCustomNorm method)

 	(odl.space.ntuples.FnMatrixWeighting method)

 	(odl.space.ntuples.FnNoWeighting method)

 	(odl.space.ntuples.FnVector method)

 	(odl.space.ntuples.FnVectorWeighting method)

 	(odl.space.ntuples.Ntuples method)

 	(odl.space.ntuples.NtuplesVector method)

 	__getitem__() (odl.discr.discretization.DiscretizationVector method)

 	

 	(odl.discr.discretization.RawDiscretizationVector method)

 	(odl.discr.grid.RegularGrid method)

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.domain.IntervalProd method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.sets.CartesianProduct method)

 	(odl.solvers.util.partial.StorePartial method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.base_ntuples.NtuplesBaseVector method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.ntuples.FnVector method)

 	(odl.space.ntuples.NtuplesVector method)

 	__init__() (odl.diagnostics.operator.OperatorTest method)

 	

 	(odl.diagnostics.space.SpaceTest method)

 	(odl.discr.discr_mappings.FunctionSetMapping method)

 	(odl.discr.discr_mappings.LinearInterpolation method)

 	(odl.discr.discr_mappings.NearestInterpolation method)

 	(odl.discr.discr_mappings.PerAxisInterpolation method)

 	(odl.discr.discr_mappings.PointCollocation method)

 	(odl.discr.discr_ops.Divergence method)

 	(odl.discr.discr_ops.Gradient method)

 	(odl.discr.discr_ops.Laplacian method)

 	(odl.discr.discr_ops.PartialDerivative method)

 	(odl.discr.discretization.Discretization method)

 	(odl.discr.discretization.DiscretizationVector method)

 	(odl.discr.discretization.RawDiscretization method)

 	(odl.discr.discretization.RawDiscretizationVector method)

 	(odl.discr.grid.RegularGrid method)

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.discr.partition.RectPartition method)

 	(odl.operator.default_ops.ConstantOperator method)

 	(odl.operator.default_ops.IdentityOperator method)

 	(odl.operator.default_ops.InnerProductOperator method)

 	(odl.operator.default_ops.LinCombOperator method)

 	(odl.operator.default_ops.MultiplyOperator method)

 	(odl.operator.default_ops.ResidualOperator method)

 	(odl.operator.default_ops.ScalingOperator method)

 	(odl.operator.default_ops.ZeroOperator method)

 	(odl.operator.operator.FunctionalLeftVectorMult method)

 	(odl.operator.operator.Operator method)

 	(odl.operator.operator.OperatorComp method)

 	(odl.operator.operator.OperatorLeftScalarMult method)

 	(odl.operator.operator.OperatorLeftVectorMult method)

 	(odl.operator.operator.OperatorPointwiseProduct method)

 	(odl.operator.operator.OperatorRightScalarMult method)

 	(odl.operator.operator.OperatorRightVectorMult method)

 	(odl.operator.operator.OperatorSum method)

 	(odl.operator.pspace_ops.BroadcastOperator method)

 	(odl.operator.pspace_ops.ComponentProjection method)

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint method)

 	(odl.operator.pspace_ops.ProductSpaceOperator method)

 	(odl.operator.pspace_ops.ReductionOperator method)

 	(odl.set.domain.IntervalProd method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.sets.CartesianProduct method)

 	(odl.set.sets.Strings method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.set.space.UniversalSpace method)

 	(odl.solvers.scalar.steplen.BacktrackingLineSearch method)

 	(odl.solvers.scalar.steplen.BarzilaiBorweinStep method)

 	(odl.solvers.scalar.steplen.ConstantLineSearch method)

 	(odl.solvers.util.partial.AndPartial method)

 	(odl.solvers.util.partial.ForEachPartial method)

 	(odl.solvers.util.partial.PrintIterationPartial method)

 	(odl.solvers.util.partial.PrintNormPartial method)

 	(odl.solvers.util.partial.PrintTimingPartial method)

 	(odl.solvers.util.partial.ShowPartial method)

 	(odl.solvers.util.partial.StorePartial method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.base_ntuples.FnWeightingBase method)

 	(odl.space.base_ntuples.NtuplesBase method)

 	(odl.space.base_ntuples.NtuplesBaseVector method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaFnConstWeighting method)

 	(odl.space.cu_ntuples.CudaFnCustomDist method)

 	(odl.space.cu_ntuples.CudaFnCustomInnerProduct method)

 	(odl.space.cu_ntuples.CudaFnCustomNorm method)

 	(odl.space.cu_ntuples.CudaFnNoWeighting method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaFnVectorWeighting method)

 	(odl.space.cu_ntuples.CudaNtuples method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSet method)

 	(odl.space.fspace.FunctionSetVector method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.FnConstWeighting method)

 	(odl.space.ntuples.FnCustomDist method)

 	(odl.space.ntuples.FnCustomInnerProduct method)

 	(odl.space.ntuples.FnCustomNorm method)

 	(odl.space.ntuples.FnMatrixWeighting method)

 	(odl.space.ntuples.FnNoWeighting method)

 	(odl.space.ntuples.FnVector method)

 	(odl.space.ntuples.FnVectorWeighting method)

 	(odl.space.ntuples.MatVecOperator method)

 	(odl.space.ntuples.Ntuples method)

 	(odl.space.ntuples.NtuplesVector method)

 	(odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper method)

 	(odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper method)

 	(odl.tomo.backends.stir_bindings.StirVerbosity method)

 	(odl.tomo.geometry.conebeam.CircularConeFlatGeometry method)

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry method)

 	(odl.tomo.geometry.detector.CircleSectionDetector method)

 	(odl.tomo.geometry.detector.Detector method)

 	(odl.tomo.geometry.detector.Flat1dDetector method)

 	(odl.tomo.geometry.detector.Flat2dDetector method)

 	(odl.tomo.geometry.detector.FlatDetector method)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry method)

 	(odl.tomo.geometry.geometry.AxisOrientedGeometry method)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry method)

 	(odl.tomo.geometry.geometry.Geometry method)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry method)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry method)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry method)

 	(odl.tomo.geometry.parallel.ParallelGeometry method)

 	(odl.tomo.operators.ray_trafo.RayBackProjection method)

 	(odl.tomo.operators.ray_trafo.RayTransform method)

 	(odl.trafos.fourier.DiscreteFourierTransform method)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse method)

 	(odl.trafos.fourier.FourierTransform method)

 	(odl.trafos.fourier.FourierTransformInverse method)

 	(odl.trafos.wavelet.WaveletTransform method)

 	(odl.trafos.wavelet.WaveletTransformInverse method)

 	(odl.util.testutils.FailCounter method)

 	(odl.util.testutils.ProgressBar method)

 	(odl.util.testutils.ProgressRange method)

 	(odl.util.testutils.Timer method)

 	(odl.util.ufuncs.CudaNtuplesUFuncs method)

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	__setitem__() (odl.discr.discretization.DiscretizationVector method)

 	

 	(odl.discr.discretization.RawDiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.base_ntuples.NtuplesBaseVector method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.ntuples.FnVector method)

 	(odl.space.ntuples.NtuplesVector method)

 	_call() (odl.discr.discr_mappings.FunctionSetMapping method)

 	

 	(odl.discr.discr_mappings.LinearInterpolation method)

 	(odl.discr.discr_mappings.NearestInterpolation method)

 	(odl.discr.discr_mappings.PerAxisInterpolation method)

 	(odl.discr.discr_mappings.PointCollocation method)

 	(odl.discr.discr_ops.Divergence method)

 	(odl.discr.discr_ops.Gradient method)

 	(odl.discr.discr_ops.Laplacian method)

 	(odl.discr.discr_ops.PartialDerivative method)

 	(odl.operator.default_ops.ConstantOperator method)

 	(odl.operator.default_ops.IdentityOperator method)

 	(odl.operator.default_ops.InnerProductOperator method)

 	(odl.operator.default_ops.LinCombOperator method)

 	(odl.operator.default_ops.MultiplyOperator method)

 	(odl.operator.default_ops.ResidualOperator method)

 	(odl.operator.default_ops.ScalingOperator method)

 	(odl.operator.default_ops.ZeroOperator method)

 	(odl.operator.operator.FunctionalLeftVectorMult method)

 	(odl.operator.operator.Operator method)

 	(odl.operator.operator.OperatorComp method)

 	(odl.operator.operator.OperatorLeftScalarMult method)

 	(odl.operator.operator.OperatorLeftVectorMult method)

 	(odl.operator.operator.OperatorPointwiseProduct method)

 	(odl.operator.operator.OperatorRightScalarMult method)

 	(odl.operator.operator.OperatorRightVectorMult method)

 	(odl.operator.operator.OperatorSum method)

 	(odl.operator.pspace_ops.BroadcastOperator method)

 	(odl.operator.pspace_ops.ComponentProjection method)

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint method)

 	(odl.operator.pspace_ops.ProductSpaceOperator method)

 	(odl.operator.pspace_ops.ReductionOperator method)

 	(odl.space.fspace.FunctionSetVector method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.MatVecOperator method)

 	(odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper method)

 	(odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper method)

 	(odl.tomo.operators.ray_trafo.RayBackProjection method)

 	(odl.tomo.operators.ray_trafo.RayTransform method)

 	(odl.trafos.fourier.DiscreteFourierTransform method)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse method)

 	(odl.trafos.fourier.FourierTransform method)

 	(odl.trafos.fourier.FourierTransformInverse method)

 	(odl.trafos.wavelet.WaveletTransform method)

 	(odl.trafos.wavelet.WaveletTransformInverse method)

 	

 	_dist() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	_divide() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	_inner() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	_lincomb() (odl.diagnostics.space.SpaceTest method)

 	

 	(odl.discr.discretization.Discretization method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	_multiply() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	_norm() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

A

 	

 	absolute() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	add() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	adjoint (odl.discr.discr_mappings.FunctionSetMapping attribute)

 	

 	(odl.discr.discr_mappings.LinearInterpolation attribute)

 	(odl.discr.discr_mappings.NearestInterpolation attribute)

 	(odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	(odl.discr.discr_mappings.PointCollocation attribute)

 	(odl.discr.discr_ops.Divergence attribute)

 	(odl.discr.discr_ops.Gradient attribute)

 	(odl.discr.discr_ops.Laplacian attribute)

 	(odl.discr.discr_ops.PartialDerivative attribute)

 	(odl.operator.default_ops.ConstantOperator attribute)

 	(odl.operator.default_ops.IdentityOperator attribute)

 	(odl.operator.default_ops.InnerProductOperator attribute)

 	(odl.operator.default_ops.LinCombOperator attribute)

 	(odl.operator.default_ops.MultiplyOperator attribute)

 	(odl.operator.default_ops.ResidualOperator attribute)

 	(odl.operator.default_ops.ScalingOperator attribute)

 	(odl.operator.default_ops.ZeroOperator attribute)

 	(odl.operator.operator.FunctionalLeftVectorMult attribute)

 	(odl.operator.operator.Operator attribute)

 	(odl.operator.operator.OperatorComp attribute)

 	(odl.operator.operator.OperatorLeftScalarMult attribute)

 	(odl.operator.operator.OperatorLeftVectorMult attribute)

 	(odl.operator.operator.OperatorPointwiseProduct attribute)

 	(odl.operator.operator.OperatorRightScalarMult attribute)

 	(odl.operator.operator.OperatorRightVectorMult attribute)

 	(odl.operator.operator.OperatorSum attribute)

 	(odl.operator.pspace_ops.BroadcastOperator attribute)

 	(odl.operator.pspace_ops.ComponentProjection attribute)

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint attribute)

 	(odl.operator.pspace_ops.ProductSpaceOperator attribute)

 	(odl.operator.pspace_ops.ReductionOperator attribute)

 	(odl.space.fspace.FunctionSetVector attribute)

 	(odl.space.fspace.FunctionSpaceVector attribute)

 	(odl.space.ntuples.MatVecOperator attribute)

 	(odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper attribute)

 	(odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper attribute)

 	(odl.tomo.operators.ray_trafo.RayBackProjection attribute)

 	(odl.tomo.operators.ray_trafo.RayTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse attribute)

 	(odl.trafos.fourier.FourierTransform attribute)

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	(odl.trafos.wavelet.WaveletTransform attribute)

 	(odl.trafos.wavelet.WaveletTransformInverse attribute)

 	adjoint() (odl.diagnostics.operator.OperatorTest method)

 	all_almost_equal() (in module odl.util.testutils)

 	all_almost_equal_array() (in module odl.util.testutils)

 	all_equal() (in module odl.util.testutils)

 	almost_equal() (in module odl.util.testutils)

 	AndPartial (class in odl.solvers.util.partial)

 	angles_from_matrix() (in module odl.tomo.util.utility)

 	append() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	(odl.set.domain.IntervalProd method)

 	apply_on_boundary() (in module odl.util.numerics)

 	approx_contains() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	(odl.set.domain.IntervalProd method)

 	approx_equals() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.partition.RectPartition method)

 	(odl.set.domain.IntervalProd method)

 	arccos() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	arccosh() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	arcsin() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	arcsinh() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	arctan() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	arctan2() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	arctanh() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	area (odl.set.domain.IntervalProd attribute)

 	array-like

 	array1d_repr() (in module odl.util.utility)

 	

 	array1d_str() (in module odl.util.utility)

 	array_to_pywt_coeff() (in module odl.trafos.wavelet)

 	arraynd_repr() (in module odl.util.utility)

 	arraynd_str() (in module odl.util.utility)

 	asarray() (odl.discr.discretization.DiscretizationVector method)

 	

 	(odl.discr.discretization.RawDiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.base_ntuples.NtuplesBaseVector method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.ntuples.FnVector method)

 	(odl.space.ntuples.NtuplesVector method)

 	assign() (odl.discr.discretization.DiscretizationVector method)

 	

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSetVector method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.FnVector method)

 	astra_algorithm() (in module odl.tomo.backends.astra_setup)

 	astra_conebeam_2d_geom_to_vec() (in module odl.tomo.backends.astra_setup)

 	astra_conebeam_3d_geom_to_vec() (in module odl.tomo.backends.astra_setup)

 	astra_cpu_back_projector() (in module odl.tomo.backends.astra_cpu)

 	astra_cpu_forward_projector() (in module odl.tomo.backends.astra_cpu)

 	astra_cuda_back_projector() (in module odl.tomo.backends.astra_cuda)

 	astra_cuda_forward_projector() (in module odl.tomo.backends.astra_cuda)

 	astra_data() (in module odl.tomo.backends.astra_setup)

 	astra_parallel_3d_geom_to_vec() (in module odl.tomo.backends.astra_setup)

 	astra_projection_geometry() (in module odl.tomo.backends.astra_setup)

 	astra_projector() (in module odl.tomo.backends.astra_setup)

 	astra_volume_geometry() (in module odl.tomo.backends.astra_setup)

 	astype() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	axes (odl.tomo.geometry.detector.Flat2dDetector attribute)

 	

 	(odl.trafos.fourier.DiscreteFourierTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse attribute)

 	(odl.trafos.fourier.FourierTransform attribute)

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	axis (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.detector.Flat1dDetector attribute)

 	(odl.tomo.geometry.geometry.AxisOrientedGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	axis_rotation() (in module odl.tomo.util.utility)

 	axis_rotation_matrix() (in module odl.tomo.util.utility)

 	AxisOrientedGeometry (class in odl.tomo.geometry.geometry)

B

 	

 	BackProjectorByBinWrapper (class in odl.tomo.backends.stir_bindings)

 	BacktrackingLineSearch (class in odl.solvers.scalar.steplen)

 	BarzilaiBorweinStep (class in odl.solvers.scalar.steplen)

 	begin (odl.discr.partition.RectPartition attribute)

 	

 	(odl.set.domain.IntervalProd attribute)

 	bfgs_method() (in module odl.solvers.findroot.newton)

 	bitwise_and() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	

 	bitwise_or() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	bitwise_xor() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	boundary_cell_fractions (odl.discr.partition.RectPartition attribute)

 	BroadcastOperator (class in odl.operator.pspace_ops)

 	broydens_first_method() (in module odl.solvers.findroot.newton)

 	broydens_second_method() (in module odl.solvers.findroot.newton)

C

 	

 	CartesianProduct (class in odl.set.sets)

 	ceil() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	cell_boundary_vecs (odl.discr.partition.RectPartition attribute)

 	cell_sides (odl.discr.lp_discr.DiscreteLp attribute)

 	

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.discr.partition.RectPartition attribute)

 	cell_sizes_vecs (odl.discr.partition.RectPartition attribute)

 	cell_volume (odl.discr.lp_discr.DiscreteLp attribute)

 	

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.discr.partition.RectPartition attribute)

 	center (odl.discr.grid.RegularGrid attribute)

 	chambolle_pock_solver() (in module odl.solvers.advanced.chambolle_pock)

 	circ_rad (odl.tomo.geometry.detector.CircleSectionDetector attribute)

 	CircleSectionDetector (class in odl.tomo.geometry.detector)

 	CircularConeFlatGeometry (class in odl.tomo.geometry.conebeam)

 	clear_fftw_plan() (odl.trafos.fourier.DiscreteFourierTransform method)

 	

 	(odl.trafos.fourier.DiscreteFourierTransformInverse method)

 	(odl.trafos.fourier.FourierTransform method)

 	(odl.trafos.fourier.FourierTransformInverse method)

 	clear_temporaries() (odl.trafos.fourier.FourierTransform method)

 	

 	(odl.trafos.fourier.FourierTransformInverse method)

 	Cn() (in module odl.space.ntuples)

 	coeff_size_list() (in module odl.trafos.wavelet)

 	collapse() (odl.set.domain.IntervalProd method)

 	combine_proximals() (in module odl.solvers.advanced.proximal_operators)

 	ComplexNumbers (class in odl.set.sets)

 	ComponentProjection (class in odl.operator.pspace_ops)

 	ComponentProjectionAdjoint (class in odl.operator.pspace_ops)

 	conj() (odl.discr.lp_discr.DiscreteLpVector method)

 	

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.FnVector method)

 	(odl.util.ufuncs.CudaNtuplesUFuncs method)

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	conj_exponent() (in module odl.util.utility)

 	conjugate_gradient() (in module odl.solvers.iterative.iterative)

 	conjugate_gradient_normal() (in module odl.solvers.iterative.iterative)

 	const (odl.space.cu_ntuples.CudaFnConstWeighting attribute)

 	

 	(odl.space.cu_ntuples.CudaFnNoWeighting attribute)

 	(odl.space.ntuples.FnConstWeighting attribute)

 	(odl.space.ntuples.FnNoWeighting attribute)

 	ConstantLineSearch (class in odl.solvers.scalar.steplen)

 	ConstantOperator (class in odl.operator.default_ops)

 	contains() (odl.diagnostics.space.SpaceTest method)

 	

 	contains_all() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.discretization.RawDiscretization method)

 	(odl.discr.grid.RegularGrid method)

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.domain.IntervalProd method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.sets.CartesianProduct method)

 	(odl.set.sets.ComplexNumbers method)

 	(odl.set.sets.EmptySet method)

 	(odl.set.sets.Field method)

 	(odl.set.sets.Integers method)

 	(odl.set.sets.RealNumbers method)

 	(odl.set.sets.Set method)

 	(odl.set.sets.Strings method)

 	(odl.set.sets.UniversalSet method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.NtuplesBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaNtuples method)

 	(odl.space.fspace.FunctionSet method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.Ntuples method)

 	contains_set() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.discretization.RawDiscretization method)

 	(odl.discr.grid.RegularGrid method)

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.domain.IntervalProd method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.sets.CartesianProduct method)

 	(odl.set.sets.ComplexNumbers method)

 	(odl.set.sets.EmptySet method)

 	(odl.set.sets.Field method)

 	(odl.set.sets.Integers method)

 	(odl.set.sets.RealNumbers method)

 	(odl.set.sets.Set method)

 	(odl.set.sets.Strings method)

 	(odl.set.sets.UniversalSet method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.NtuplesBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaNtuples method)

 	(odl.space.fspace.FunctionSet method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.Ntuples method)

 	convex_hull() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	coord_vectors (odl.discr.grid.RegularGrid attribute)

 	

 	(odl.discr.grid.TensorGrid attribute)

 	copy() (odl.discr.discretization.DiscretizationVector method)

 	

 	(odl.discr.discretization.RawDiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.base_ntuples.NtuplesBaseVector method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSetVector method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.FnVector method)

 	(odl.space.ntuples.NtuplesVector method)

 	copysign() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	corner_grid() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	corners() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	(odl.set.domain.IntervalProd method)

 	cos() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	cosh() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	create_temporaries() (odl.trafos.fourier.FourierTransform method)

 	

 	(odl.trafos.fourier.FourierTransformInverse method)

 	cu_weighted_dist() (in module odl.space.cu_ntuples)

 	cu_weighted_inner() (in module odl.space.cu_ntuples)

 	cu_weighted_norm() (in module odl.space.cu_ntuples)

 	Cuboid() (in module odl.set.domain)

 	cuboid() (in module odl.util.phantom)

 	CudaFn (class in odl.space.cu_ntuples)

 	CudaFnConstWeighting (class in odl.space.cu_ntuples)

 	CudaFnCustomDist (class in odl.space.cu_ntuples)

 	CudaFnCustomInnerProduct (class in odl.space.cu_ntuples)

 	CudaFnCustomNorm (class in odl.space.cu_ntuples)

 	CudaFnNoWeighting (class in odl.space.cu_ntuples)

 	CudaFnVector (class in odl.space.cu_ntuples)

 	CudaFnVectorWeighting (class in odl.space.cu_ntuples)

 	CudaNtuples (class in odl.space.cu_ntuples)

 	CudaNtuplesUFuncs (class in odl.util.ufuncs)

 	CudaNtuplesVector (class in odl.space.cu_ntuples)

 	CudaRn() (in module odl.space.cu_ntuples)

D

 	

 	data (odl.space.cu_ntuples.CudaFnVector attribute)

 	

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.ntuples.FnVector attribute)

 	(odl.space.ntuples.NtuplesVector attribute)

 	data_ptr (odl.space.cu_ntuples.CudaFnVector attribute)

 	

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.ntuples.FnVector attribute)

 	(odl.space.ntuples.NtuplesVector attribute)

 	default_dtype() (odl.space.cu_ntuples.CudaFn static method)

 	

 	(odl.space.ntuples.Fn static method)

 	deg2rad() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	derenzo_sources() (in module odl.util.phantom)

 	derivative() (odl.diagnostics.operator.OperatorTest method)

 	

 	(odl.discr.discr_mappings.FunctionSetMapping method)

 	(odl.discr.discr_mappings.LinearInterpolation method)

 	(odl.discr.discr_mappings.NearestInterpolation method)

 	(odl.discr.discr_mappings.PerAxisInterpolation method)

 	(odl.discr.discr_mappings.PointCollocation method)

 	(odl.discr.discr_ops.Divergence method)

 	(odl.discr.discr_ops.Gradient method)

 	(odl.discr.discr_ops.Laplacian method)

 	(odl.discr.discr_ops.PartialDerivative method)

 	(odl.operator.default_ops.ConstantOperator method)

 	(odl.operator.default_ops.IdentityOperator method)

 	(odl.operator.default_ops.InnerProductOperator method)

 	(odl.operator.default_ops.LinCombOperator method)

 	(odl.operator.default_ops.MultiplyOperator method)

 	(odl.operator.default_ops.ResidualOperator method)

 	(odl.operator.default_ops.ScalingOperator method)

 	(odl.operator.default_ops.ZeroOperator method)

 	(odl.operator.operator.FunctionalLeftVectorMult method)

 	(odl.operator.operator.Operator method)

 	(odl.operator.operator.OperatorComp method)

 	(odl.operator.operator.OperatorLeftScalarMult method)

 	(odl.operator.operator.OperatorLeftVectorMult method)

 	(odl.operator.operator.OperatorPointwiseProduct method)

 	(odl.operator.operator.OperatorRightScalarMult method)

 	(odl.operator.operator.OperatorRightVectorMult method)

 	(odl.operator.operator.OperatorSum method)

 	(odl.operator.pspace_ops.BroadcastOperator method)

 	(odl.operator.pspace_ops.ComponentProjection method)

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint method)

 	(odl.operator.pspace_ops.ProductSpaceOperator method)

 	(odl.operator.pspace_ops.ReductionOperator method)

 	(odl.space.fspace.FunctionSetVector method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.MatVecOperator method)

 	(odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper method)

 	(odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper method)

 	(odl.tomo.operators.ray_trafo.RayBackProjection method)

 	(odl.tomo.operators.ray_trafo.RayTransform method)

 	(odl.trafos.fourier.DiscreteFourierTransform method)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse method)

 	(odl.trafos.fourier.FourierTransform method)

 	(odl.trafos.fourier.FourierTransformInverse method)

 	(odl.trafos.wavelet.WaveletTransform method)

 	(odl.trafos.wavelet.WaveletTransformInverse method)

 	det_grid (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	det_params (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	det_partition (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	det_point_position() (odl.tomo.geometry.conebeam.CircularConeFlatGeometry method)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry method)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry method)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry method)

 	(odl.tomo.geometry.geometry.Geometry method)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry method)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry method)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry method)

 	(odl.tomo.geometry.parallel.ParallelGeometry method)

 	det_radius (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	det_refpoint() (odl.tomo.geometry.conebeam.CircularConeFlatGeometry method)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry method)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry method)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry method)

 	(odl.tomo.geometry.geometry.Geometry method)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry method)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry method)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry method)

 	(odl.tomo.geometry.parallel.ParallelGeometry method)

 	det_to_src() (odl.tomo.geometry.conebeam.CircularConeFlatGeometry method)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry method)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry method)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry method)

 	(odl.tomo.geometry.geometry.Geometry method)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry method)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry method)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry method)

 	(odl.tomo.geometry.parallel.ParallelGeometry method)

 	Detector (class in odl.tomo.geometry.detector)

 	detector (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	dft_postprocess_data() (in module odl.trafos.fourier)

 	dft_preprocess_data() (in module odl.trafos.fourier)

 	diagonal_operator() (in module odl.operator.pspace_ops)

 	discr_sequence_space() (in module odl.discr.lp_discr)

 	

 	DiscreteFourierTransform (class in odl.trafos.fourier)

 	DiscreteFourierTransformInverse (class in odl.trafos.fourier)

 	DiscreteLp (class in odl.discr.lp_discr)

 	DiscreteLpUFuncs (class in odl.util.ufuncs)

 	DiscreteLpVector (class in odl.discr.lp_discr)

 	discretization

 	Discretization (class in odl.discr.discretization)

 	DiscretizationVector (class in odl.discr.discretization)

 	dist (odl.space.ntuples.FnCustomDist attribute)

 	dist() (odl.diagnostics.space.SpaceTest method)

 	

 	(odl.discr.discretization.Discretization method)

 	(odl.discr.discretization.DiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.domain.IntervalProd method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.base_ntuples.FnWeightingBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaFnConstWeighting method)

 	(odl.space.cu_ntuples.CudaFnCustomDist method)

 	(odl.space.cu_ntuples.CudaFnCustomInnerProduct method)

 	(odl.space.cu_ntuples.CudaFnCustomNorm method)

 	(odl.space.cu_ntuples.CudaFnNoWeighting method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaFnVectorWeighting method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.FnConstWeighting method)

 	(odl.space.ntuples.FnCustomInnerProduct method)

 	(odl.space.ntuples.FnCustomNorm method)

 	(odl.space.ntuples.FnMatrixWeighting method)

 	(odl.space.ntuples.FnNoWeighting method)

 	(odl.space.ntuples.FnVector method)

 	(odl.space.ntuples.FnVectorWeighting method)

 	Divergence (class in odl.discr.discr_ops)

 	DivergentBeamGeometry (class in odl.tomo.geometry.geometry)

 	divide() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.discretization.DiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.FnVector method)

 	(odl.util.ufuncs.CudaNtuplesUFuncs method)

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	domain

 	

 	(odl.discr.discr_mappings.FunctionSetMapping attribute)

 	(odl.discr.discr_mappings.LinearInterpolation attribute)

 	(odl.discr.discr_mappings.NearestInterpolation attribute)

 	(odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	(odl.discr.discr_mappings.PointCollocation attribute)

 	(odl.discr.discr_ops.Divergence attribute)

 	(odl.discr.discr_ops.Gradient attribute)

 	(odl.discr.discr_ops.Laplacian attribute)

 	(odl.discr.discr_ops.PartialDerivative attribute)

 	(odl.discr.discretization.Discretization attribute)

 	(odl.discr.discretization.RawDiscretization attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.operator.default_ops.ConstantOperator attribute)

 	(odl.operator.default_ops.IdentityOperator attribute)

 	(odl.operator.default_ops.InnerProductOperator attribute)

 	(odl.operator.default_ops.LinCombOperator attribute)

 	(odl.operator.default_ops.MultiplyOperator attribute)

 	(odl.operator.default_ops.ResidualOperator attribute)

 	(odl.operator.default_ops.ScalingOperator attribute)

 	(odl.operator.default_ops.ZeroOperator attribute)

 	(odl.operator.operator.FunctionalLeftVectorMult attribute)

 	(odl.operator.operator.Operator attribute)

 	(odl.operator.operator.OperatorComp attribute)

 	(odl.operator.operator.OperatorLeftScalarMult attribute)

 	(odl.operator.operator.OperatorLeftVectorMult attribute)

 	(odl.operator.operator.OperatorPointwiseProduct attribute)

 	(odl.operator.operator.OperatorRightScalarMult attribute)

 	(odl.operator.operator.OperatorRightVectorMult attribute)

 	(odl.operator.operator.OperatorSum attribute)

 	(odl.operator.pspace_ops.BroadcastOperator attribute)

 	(odl.operator.pspace_ops.ComponentProjection attribute)

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint attribute)

 	(odl.operator.pspace_ops.ProductSpaceOperator attribute)

 	(odl.operator.pspace_ops.ReductionOperator attribute)

 	(odl.space.fspace.FunctionSet attribute)

 	(odl.space.fspace.FunctionSetVector attribute)

 	(odl.space.fspace.FunctionSpace attribute)

 	(odl.space.fspace.FunctionSpaceVector attribute)

 	(odl.space.ntuples.MatVecOperator attribute)

 	(odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper attribute)

 	(odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper attribute)

 	(odl.tomo.operators.ray_trafo.RayBackProjection attribute)

 	(odl.tomo.operators.ray_trafo.RayTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse attribute)

 	(odl.trafos.fourier.FourierTransform attribute)

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	(odl.trafos.wavelet.WaveletTransform attribute)

 	(odl.trafos.wavelet.WaveletTransformInverse attribute)

 	dspace (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.discretization.RawDiscretization attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	dspace_type (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.discretization.RawDiscretization attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	dspace_type() (in module odl.discr.discretization)

 	dtype

 	

 	(odl.discr.discretization.Discretization attribute)

 	(odl.discr.discretization.DiscretizationVector attribute)

 	(odl.discr.discretization.RawDiscretization attribute)

 	(odl.discr.discretization.RawDiscretizationVector attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.space.base_ntuples.FnBase attribute)

 	(odl.space.base_ntuples.FnBaseVector attribute)

 	(odl.space.base_ntuples.NtuplesBase attribute)

 	(odl.space.base_ntuples.NtuplesBaseVector attribute)

 	(odl.space.cu_ntuples.CudaFn attribute)

 	(odl.space.cu_ntuples.CudaFnVector attribute)

 	(odl.space.cu_ntuples.CudaNtuples attribute)

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.ntuples.Fn attribute)

 	(odl.space.ntuples.FnVector attribute)

 	(odl.space.ntuples.Ntuples attribute)

 	(odl.space.ntuples.NtuplesVector attribute)

 	dtype_repr() (in module odl.util.utility)

E

 	

 	element

 	element() (odl.diagnostics.space.SpaceTest method)

 	

 	(odl.discr.discretization.Discretization method)

 	(odl.discr.discretization.RawDiscretization method)

 	(odl.discr.grid.RegularGrid method)

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.domain.IntervalProd method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.sets.CartesianProduct method)

 	(odl.set.sets.ComplexNumbers method)

 	(odl.set.sets.EmptySet method)

 	(odl.set.sets.Field method)

 	(odl.set.sets.Integers method)

 	(odl.set.sets.RealNumbers method)

 	(odl.set.sets.Set method)

 	(odl.set.sets.Strings method)

 	(odl.set.sets.UniversalSet method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.NtuplesBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaNtuples method)

 	(odl.space.fspace.FunctionSet method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.Ntuples method)

 	element-like

 	element_type (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.discretization.RawDiscretization attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.set.pspace.ProductSpace attribute)

 	(odl.set.space.LinearSpace attribute)

 	(odl.set.space.UniversalSpace attribute)

 	(odl.space.base_ntuples.FnBase attribute)

 	(odl.space.base_ntuples.NtuplesBase attribute)

 	(odl.space.cu_ntuples.CudaFn attribute)

 	(odl.space.cu_ntuples.CudaNtuples attribute)

 	(odl.space.fspace.FunctionSet attribute)

 	(odl.space.fspace.FunctionSpace attribute)

 	(odl.space.ntuples.Fn attribute)

 	(odl.space.ntuples.Ntuples attribute)

 	ellipse_phantom_2d() (in module odl.util.phantom)

 	ellipse_phantom_3d() (in module odl.util.phantom)

 	EmptySet (class in odl.set.sets)

 	end (odl.discr.partition.RectPartition attribute)

 	

 	(odl.set.domain.IntervalProd attribute)

 	equal() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	equals() (odl.diagnostics.space.SpaceTest method)

 	

 	equiv() (odl.space.base_ntuples.FnWeightingBase method)

 	

 	(odl.space.cu_ntuples.CudaFnConstWeighting method)

 	(odl.space.cu_ntuples.CudaFnCustomDist method)

 	(odl.space.cu_ntuples.CudaFnCustomInnerProduct method)

 	(odl.space.cu_ntuples.CudaFnCustomNorm method)

 	(odl.space.cu_ntuples.CudaFnNoWeighting method)

 	(odl.space.cu_ntuples.CudaFnVectorWeighting method)

 	(odl.space.ntuples.FnConstWeighting method)

 	(odl.space.ntuples.FnCustomDist method)

 	(odl.space.ntuples.FnCustomInnerProduct method)

 	(odl.space.ntuples.FnCustomNorm method)

 	(odl.space.ntuples.FnMatrixWeighting method)

 	(odl.space.ntuples.FnNoWeighting method)

 	(odl.space.ntuples.FnVectorWeighting method)

 	euler_matrix() (in module odl.tomo.util.utility)

 	exp() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	exp2() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	exp_zero_seq() (in module odl.solvers.iterative.iterative)

 	expm1() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	exponent (odl.discr.lp_discr.DiscreteLp attribute)

 	

 	(odl.space.base_ntuples.FnWeightingBase attribute)

 	(odl.space.cu_ntuples.CudaFn attribute)

 	(odl.space.cu_ntuples.CudaFnConstWeighting attribute)

 	(odl.space.cu_ntuples.CudaFnCustomDist attribute)

 	(odl.space.cu_ntuples.CudaFnCustomInnerProduct attribute)

 	(odl.space.cu_ntuples.CudaFnCustomNorm attribute)

 	(odl.space.cu_ntuples.CudaFnNoWeighting attribute)

 	(odl.space.cu_ntuples.CudaFnVectorWeighting attribute)

 	(odl.space.ntuples.Fn attribute)

 	(odl.space.ntuples.FnConstWeighting attribute)

 	(odl.space.ntuples.FnCustomDist attribute)

 	(odl.space.ntuples.FnCustomInnerProduct attribute)

 	(odl.space.ntuples.FnCustomNorm attribute)

 	(odl.space.ntuples.FnMatrixWeighting attribute)

 	(odl.space.ntuples.FnNoWeighting attribute)

 	(odl.space.ntuples.FnVectorWeighting attribute)

 	extension

 	

 	(odl.discr.discretization.Discretization attribute)

 	(odl.discr.discretization.DiscretizationVector attribute)

 	(odl.discr.discretization.RawDiscretization attribute)

 	(odl.discr.discretization.RawDiscretizationVector attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	extent() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.partition.RectPartition method)

 	(odl.set.domain.IntervalProd method)

F

 	

 	fail() (odl.util.testutils.FailCounter method)

 	FailCounter (class in odl.util.testutils)

 	FanFlatGeometry (class in odl.tomo.geometry.fanbeam)

 	fast_1d_tensor_mult() (in module odl.util.numerics)

 	Field (class in odl.set.sets)

 	field (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.set.pspace.ProductSpace attribute)

 	(odl.set.sets.ComplexNumbers attribute)

 	(odl.set.sets.Field attribute)

 	(odl.set.sets.RealNumbers attribute)

 	(odl.set.space.LinearSpace attribute)

 	(odl.set.space.UniversalSpace attribute)

 	(odl.space.base_ntuples.FnBase attribute)

 	(odl.space.cu_ntuples.CudaFn attribute)

 	(odl.space.fspace.FunctionSpace attribute)

 	(odl.space.ntuples.Fn attribute)

 	field() (odl.diagnostics.space.SpaceTest method)

 	finite_diff() (in module odl.discr.discr_ops)

 	Flat1dDetector (class in odl.tomo.geometry.detector)

 	Flat2dDetector (class in odl.tomo.geometry.detector)

 	FlatDetector (class in odl.tomo.geometry.detector)

 	floor() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	floor_divide() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	fmax() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	fmin() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	fmod() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	Fn (class in odl.space.ntuples)

 	FnBase (class in odl.space.base_ntuples)

 	FnBaseVector (class in odl.space.base_ntuples)

 	

 	FnConstWeighting (class in odl.space.ntuples)

 	FnCustomDist (class in odl.space.ntuples)

 	FnCustomInnerProduct (class in odl.space.ntuples)

 	FnCustomNorm (class in odl.space.ntuples)

 	FnMatrixWeighting (class in odl.space.ntuples)

 	FnNoWeighting (class in odl.space.ntuples)

 	FnVector (class in odl.space.ntuples)

 	FnVectorWeighting (class in odl.space.ntuples)

 	FnWeightingBase (class in odl.space.base_ntuples)

 	ForEachPartial (class in odl.solvers.util.partial)

 	ForwardProjectorByBinWrapper (class in odl.tomo.backends.stir_bindings)

 	FourierTransform (class in odl.trafos.fourier)

 	FourierTransformInverse (class in odl.trafos.fourier)

 	FunctionalLeftVectorMult (class in odl.operator.operator)

 	FunctionSet (class in odl.space.fspace)

 	FunctionSetMapping (class in odl.discr.discr_mappings)

 	FunctionSetVector (class in odl.space.fspace)

 	FunctionSpace (class in odl.space.fspace)

 	FunctionSpaceVector (class in odl.space.fspace)

G

 	

 	gauss_newton() (in module odl.solvers.iterative.iterative)

 	Geometry (class in odl.tomo.geometry.geometry)

 	geometry (odl.tomo.operators.ray_trafo.RayBackProjection attribute)

 	

 	(odl.tomo.operators.ray_trafo.RayTransform attribute)

 	Gradient (class in odl.discr.discr_ops)

 	

 	greater() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	greater_equal() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	grid (odl.discr.discr_mappings.FunctionSetMapping attribute)

 	

 	(odl.discr.discr_mappings.LinearInterpolation attribute)

 	(odl.discr.discr_mappings.NearestInterpolation attribute)

 	(odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	(odl.discr.discr_mappings.PointCollocation attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.discr.partition.RectPartition attribute)

 	(odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.detector.CircleSectionDetector attribute)

 	(odl.tomo.geometry.detector.Detector attribute)

 	(odl.tomo.geometry.detector.Flat1dDetector attribute)

 	(odl.tomo.geometry.detector.Flat2dDetector attribute)

 	(odl.tomo.geometry.detector.FlatDetector attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

H

 	

 	halfcomplex (odl.trafos.fourier.DiscreteFourierTransform attribute)

 	

 	(odl.trafos.fourier.DiscreteFourierTransformInverse attribute)

 	(odl.trafos.fourier.FourierTransform attribute)

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	HelicalConeFlatGeometry (class in odl.tomo.geometry.conebeam)

 	

 	hypot() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

I

 	

 	IdentityOperator (class in odl.operator.default_ops)

 	imag (odl.discr.lp_discr.DiscreteLpVector attribute)

 	

 	(odl.space.fspace.FunctionSpaceVector attribute)

 	(odl.space.ntuples.FnVector attribute)

 	impl (odl.space.base_ntuples.FnWeightingBase attribute)

 	

 	(odl.space.cu_ntuples.CudaFnConstWeighting attribute)

 	(odl.space.cu_ntuples.CudaFnCustomDist attribute)

 	(odl.space.cu_ntuples.CudaFnCustomInnerProduct attribute)

 	(odl.space.cu_ntuples.CudaFnCustomNorm attribute)

 	(odl.space.cu_ntuples.CudaFnNoWeighting attribute)

 	(odl.space.cu_ntuples.CudaFnVectorWeighting attribute)

 	(odl.space.ntuples.FnConstWeighting attribute)

 	(odl.space.ntuples.FnCustomDist attribute)

 	(odl.space.ntuples.FnCustomInnerProduct attribute)

 	(odl.space.ntuples.FnCustomNorm attribute)

 	(odl.space.ntuples.FnMatrixWeighting attribute)

 	(odl.space.ntuples.FnNoWeighting attribute)

 	(odl.space.ntuples.FnVectorWeighting attribute)

 	(odl.tomo.operators.ray_trafo.RayBackProjection attribute)

 	(odl.tomo.operators.ray_trafo.RayTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse attribute)

 	(odl.trafos.fourier.FourierTransform attribute)

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	implementation_cache (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	in-place evaluation

 	index (odl.operator.pspace_ops.ComponentProjection attribute)

 	

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint attribute)

 	indicate_proj_axis() (in module odl.util.phantom)

 	init_fftw_plan() (odl.trafos.fourier.DiscreteFourierTransform method)

 	

 	(odl.trafos.fourier.DiscreteFourierTransformInverse method)

 	(odl.trafos.fourier.FourierTransform method)

 	(odl.trafos.fourier.FourierTransformInverse method)

 	inner (odl.space.ntuples.FnCustomInnerProduct attribute)

 	inner() (odl.diagnostics.space.SpaceTest method)

 	

 	(odl.discr.discretization.Discretization method)

 	(odl.discr.discretization.DiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.base_ntuples.FnWeightingBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaFnConstWeighting method)

 	(odl.space.cu_ntuples.CudaFnCustomDist method)

 	(odl.space.cu_ntuples.CudaFnCustomInnerProduct method)

 	(odl.space.cu_ntuples.CudaFnCustomNorm method)

 	(odl.space.cu_ntuples.CudaFnNoWeighting method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaFnVectorWeighting method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.FnConstWeighting method)

 	(odl.space.ntuples.FnCustomDist method)

 	(odl.space.ntuples.FnCustomNorm method)

 	(odl.space.ntuples.FnMatrixWeighting method)

 	(odl.space.ntuples.FnNoWeighting method)

 	(odl.space.ntuples.FnVector method)

 	(odl.space.ntuples.FnVectorWeighting method)

 	InnerProductOperator (class in odl.operator.default_ops)

 	insert() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.partition.RectPartition method)

 	(odl.set.domain.IntervalProd method)

 	Integers (class in odl.set.sets)

 	interp (odl.discr.lp_discr.DiscreteLp attribute)

 	Interval() (in module odl.set.domain)

 	IntervalProd (class in odl.set.domain)

 	inverse (odl.discr.discr_mappings.FunctionSetMapping attribute)

 	

 	(odl.discr.discr_mappings.LinearInterpolation attribute)

 	(odl.discr.discr_mappings.NearestInterpolation attribute)

 	(odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	(odl.discr.discr_mappings.PointCollocation attribute)

 	(odl.discr.discr_ops.Divergence attribute)

 	(odl.discr.discr_ops.Gradient attribute)

 	(odl.discr.discr_ops.Laplacian attribute)

 	(odl.discr.discr_ops.PartialDerivative attribute)

 	(odl.operator.default_ops.ConstantOperator attribute)

 	(odl.operator.default_ops.IdentityOperator attribute)

 	(odl.operator.default_ops.InnerProductOperator attribute)

 	(odl.operator.default_ops.LinCombOperator attribute)

 	(odl.operator.default_ops.MultiplyOperator attribute)

 	(odl.operator.default_ops.ResidualOperator attribute)

 	(odl.operator.default_ops.ScalingOperator attribute)

 	(odl.operator.default_ops.ZeroOperator attribute)

 	(odl.operator.operator.FunctionalLeftVectorMult attribute)

 	(odl.operator.operator.Operator attribute)

 	(odl.operator.operator.OperatorComp attribute)

 	(odl.operator.operator.OperatorLeftScalarMult attribute)

 	(odl.operator.operator.OperatorLeftVectorMult attribute)

 	(odl.operator.operator.OperatorPointwiseProduct attribute)

 	(odl.operator.operator.OperatorRightScalarMult attribute)

 	(odl.operator.operator.OperatorRightVectorMult attribute)

 	(odl.operator.operator.OperatorSum attribute)

 	(odl.operator.pspace_ops.BroadcastOperator attribute)

 	(odl.operator.pspace_ops.ComponentProjection attribute)

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint attribute)

 	(odl.operator.pspace_ops.ProductSpaceOperator attribute)

 	(odl.operator.pspace_ops.ReductionOperator attribute)

 	(odl.space.fspace.FunctionSetVector attribute)

 	(odl.space.fspace.FunctionSpaceVector attribute)

 	(odl.space.ntuples.MatVecOperator attribute)

 	(odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper attribute)

 	(odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper attribute)

 	(odl.tomo.operators.ray_trafo.RayBackProjection attribute)

 	(odl.tomo.operators.ray_trafo.RayTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse attribute)

 	(odl.trafos.fourier.FourierTransform attribute)

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	(odl.trafos.wavelet.WaveletTransform attribute)

 	(odl.trafos.wavelet.WaveletTransformInverse attribute)

 	inverse_reciprocal() (in module odl.trafos.fourier)

 	invert() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	is_biorthogonal (odl.trafos.wavelet.WaveletTransform attribute)

 	

 	(odl.trafos.wavelet.WaveletTransformInverse attribute)

 	is_cn (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.space.base_ntuples.FnBase attribute)

 	(odl.space.cu_ntuples.CudaFn attribute)

 	(odl.space.ntuples.Fn attribute)

 	

 	is_complex_floating_dtype() (in module odl.util.utility)

 	is_floating_dtype() (in module odl.util.utility)

 	is_functional (odl.discr.discr_mappings.FunctionSetMapping attribute)

 	

 	(odl.discr.discr_mappings.LinearInterpolation attribute)

 	(odl.discr.discr_mappings.NearestInterpolation attribute)

 	(odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	(odl.discr.discr_mappings.PointCollocation attribute)

 	(odl.discr.discr_ops.Divergence attribute)

 	(odl.discr.discr_ops.Gradient attribute)

 	(odl.discr.discr_ops.Laplacian attribute)

 	(odl.discr.discr_ops.PartialDerivative attribute)

 	(odl.operator.default_ops.ConstantOperator attribute)

 	(odl.operator.default_ops.IdentityOperator attribute)

 	(odl.operator.default_ops.InnerProductOperator attribute)

 	(odl.operator.default_ops.LinCombOperator attribute)

 	(odl.operator.default_ops.MultiplyOperator attribute)

 	(odl.operator.default_ops.ResidualOperator attribute)

 	(odl.operator.default_ops.ScalingOperator attribute)

 	(odl.operator.default_ops.ZeroOperator attribute)

 	(odl.operator.operator.FunctionalLeftVectorMult attribute)

 	(odl.operator.operator.Operator attribute)

 	(odl.operator.operator.OperatorComp attribute)

 	(odl.operator.operator.OperatorLeftScalarMult attribute)

 	(odl.operator.operator.OperatorLeftVectorMult attribute)

 	(odl.operator.operator.OperatorPointwiseProduct attribute)

 	(odl.operator.operator.OperatorRightScalarMult attribute)

 	(odl.operator.operator.OperatorRightVectorMult attribute)

 	(odl.operator.operator.OperatorSum attribute)

 	(odl.operator.pspace_ops.BroadcastOperator attribute)

 	(odl.operator.pspace_ops.ComponentProjection attribute)

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint attribute)

 	(odl.operator.pspace_ops.ProductSpaceOperator attribute)

 	(odl.operator.pspace_ops.ReductionOperator attribute)

 	(odl.space.fspace.FunctionSetVector attribute)

 	(odl.space.fspace.FunctionSpaceVector attribute)

 	(odl.space.ntuples.MatVecOperator attribute)

 	(odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper attribute)

 	(odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper attribute)

 	(odl.tomo.operators.ray_trafo.RayBackProjection attribute)

 	(odl.tomo.operators.ray_trafo.RayTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse attribute)

 	(odl.trafos.fourier.FourierTransform attribute)

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	(odl.trafos.wavelet.WaveletTransform attribute)

 	(odl.trafos.wavelet.WaveletTransformInverse attribute)

 	is_int_dtype() (in module odl.util.utility)

 	is_linear (odl.discr.discr_mappings.FunctionSetMapping attribute)

 	

 	(odl.discr.discr_mappings.LinearInterpolation attribute)

 	(odl.discr.discr_mappings.NearestInterpolation attribute)

 	(odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	(odl.discr.discr_mappings.PointCollocation attribute)

 	(odl.discr.discr_ops.Divergence attribute)

 	(odl.discr.discr_ops.Gradient attribute)

 	(odl.discr.discr_ops.Laplacian attribute)

 	(odl.discr.discr_ops.PartialDerivative attribute)

 	(odl.operator.default_ops.ConstantOperator attribute)

 	(odl.operator.default_ops.IdentityOperator attribute)

 	(odl.operator.default_ops.InnerProductOperator attribute)

 	(odl.operator.default_ops.LinCombOperator attribute)

 	(odl.operator.default_ops.MultiplyOperator attribute)

 	(odl.operator.default_ops.ResidualOperator attribute)

 	(odl.operator.default_ops.ScalingOperator attribute)

 	(odl.operator.default_ops.ZeroOperator attribute)

 	(odl.operator.operator.FunctionalLeftVectorMult attribute)

 	(odl.operator.operator.Operator attribute)

 	(odl.operator.operator.OperatorComp attribute)

 	(odl.operator.operator.OperatorLeftScalarMult attribute)

 	(odl.operator.operator.OperatorLeftVectorMult attribute)

 	(odl.operator.operator.OperatorPointwiseProduct attribute)

 	(odl.operator.operator.OperatorRightScalarMult attribute)

 	(odl.operator.operator.OperatorRightVectorMult attribute)

 	(odl.operator.operator.OperatorSum attribute)

 	(odl.operator.pspace_ops.BroadcastOperator attribute)

 	(odl.operator.pspace_ops.ComponentProjection attribute)

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint attribute)

 	(odl.operator.pspace_ops.ProductSpaceOperator attribute)

 	(odl.operator.pspace_ops.ReductionOperator attribute)

 	(odl.space.fspace.FunctionSetVector attribute)

 	(odl.space.fspace.FunctionSpaceVector attribute)

 	(odl.space.ntuples.MatVecOperator attribute)

 	(odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper attribute)

 	(odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper attribute)

 	(odl.tomo.operators.ray_trafo.RayBackProjection attribute)

 	(odl.tomo.operators.ray_trafo.RayTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse attribute)

 	(odl.trafos.fourier.FourierTransform attribute)

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	(odl.trafos.wavelet.WaveletTransform attribute)

 	(odl.trafos.wavelet.WaveletTransformInverse attribute)

 	is_orthogonal (odl.trafos.wavelet.WaveletTransform attribute)

 	

 	(odl.trafos.wavelet.WaveletTransformInverse attribute)

 	is_real_dtype() (in module odl.util.utility)

 	is_real_floating_dtype() (in module odl.util.utility)

 	is_regular (odl.discr.partition.RectPartition attribute)

 	is_rn (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.space.base_ntuples.FnBase attribute)

 	(odl.space.cu_ntuples.CudaFn attribute)

 	(odl.space.ntuples.Fn attribute)

 	is_rotation_matrix() (in module odl.tomo.util.utility)

 	is_scalar_dtype() (in module odl.util.utility)

 	is_subdict() (in module odl.util.testutils)

 	is_subgrid() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	is_valid_input_array() (in module odl.util.vectorization)

 	is_valid_input_meshgrid() (in module odl.util.vectorization)

 	is_weighted (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.space.cu_ntuples.CudaFn attribute)

 	(odl.space.ntuples.Fn attribute)

 	isfinite() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	isinf() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	isnan() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	itemsize (odl.discr.discretization.DiscretizationVector attribute)

 	

 	(odl.discr.discretization.RawDiscretizationVector attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.space.base_ntuples.FnBaseVector attribute)

 	(odl.space.base_ntuples.NtuplesBaseVector attribute)

 	(odl.space.cu_ntuples.CudaFnVector attribute)

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.ntuples.FnVector attribute)

 	(odl.space.ntuples.NtuplesVector attribute)

L

 	

 	landweber() (in module odl.solvers.iterative.iterative)

 	Laplacian (class in odl.discr.discr_ops)

 	left_shift() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	length (odl.set.domain.IntervalProd attribute)

 	

 	(odl.set.sets.Strings attribute)

 	less() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	less_equal() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	lincomb() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.discretization.DiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.FnVector method)

 	LinCombOperator (class in odl.operator.default_ops)

 	linear() (odl.diagnostics.operator.OperatorTest method)

 	LinearInterpolation (class in odl.discr.discr_mappings)

 	linearity() (odl.diagnostics.space.SpaceTest method)

 	LinearSpace (class in odl.set.space)

 	LinearSpaceNotImplementedError

 	

 	LinearSpaceTypeError

 	LinearSpaceVector (class in odl.set.space)

 	LineSearch (class in odl.solvers.scalar.steplen)

 	log() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	log10() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	log1p() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	log2() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	logaddexp() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	logaddexp2() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	logical_and() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	logical_not() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	logical_or() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	logical_xor() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

M

 	

 	matrix (odl.space.ntuples.FnMatrixWeighting attribute)

 	

 	(odl.space.ntuples.MatVecOperator attribute)

 	matrix_issparse (odl.space.ntuples.FnMatrixWeighting attribute)

 	

 	(odl.space.ntuples.MatVecOperator attribute)

 	matrix_isvalid() (odl.space.ntuples.FnMatrixWeighting method)

 	matrix_representation() (in module odl.operator.oputils)

 	MatVecOperator (class in odl.space.ntuples)

 	max() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.partition.RectPartition method)

 	(odl.set.domain.IntervalProd method)

 	(odl.util.ufuncs.CudaNtuplesUFuncs method)

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	max_pt (odl.discr.grid.RegularGrid attribute)

 	

 	(odl.discr.grid.TensorGrid attribute)

 	maximum() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	measure() (odl.set.domain.IntervalProd method)

 	meshgrid

 	

 	(odl.discr.grid.RegularGrid attribute)

 	(odl.discr.grid.TensorGrid attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.discr.partition.RectPartition attribute)

 	method() (in module odl.util.ufuncs)

 	

 	midpoint (odl.set.domain.IntervalProd attribute)

 	min() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.partition.RectPartition method)

 	(odl.set.domain.IntervalProd method)

 	(odl.util.ufuncs.CudaNtuplesUFuncs method)

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	min_pt (odl.discr.grid.RegularGrid attribute)

 	

 	(odl.discr.grid.TensorGrid attribute)

 	minimum() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	mod() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	modf() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	motion_grid (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	motion_params (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	motion_partition (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	multiply() (odl.diagnostics.space.SpaceTest method)

 	

 	(odl.discr.discretization.Discretization method)

 	(odl.discr.discretization.DiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.FnVector method)

 	(odl.util.ufuncs.CudaNtuplesUFuncs method)

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	MultiplyOperator (class in odl.operator.default_ops)

N

 	

 	nbytes (odl.discr.discretization.DiscretizationVector attribute)

 	

 	(odl.discr.discretization.RawDiscretizationVector attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.space.base_ntuples.FnBaseVector attribute)

 	(odl.space.base_ntuples.NtuplesBaseVector attribute)

 	(odl.space.cu_ntuples.CudaFnVector attribute)

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.ntuples.FnVector attribute)

 	(odl.space.ntuples.NtuplesVector attribute)

 	ndim (odl.discr.discretization.DiscretizationVector attribute)

 	

 	(odl.discr.discretization.RawDiscretizationVector attribute)

 	(odl.discr.grid.RegularGrid attribute)

 	(odl.discr.grid.TensorGrid attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.discr.partition.RectPartition attribute)

 	(odl.set.domain.IntervalProd attribute)

 	(odl.space.base_ntuples.FnBaseVector attribute)

 	(odl.space.base_ntuples.NtuplesBaseVector attribute)

 	(odl.space.cu_ntuples.CudaFnVector attribute)

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.ntuples.FnVector attribute)

 	(odl.space.ntuples.NtuplesVector attribute)

 	(odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.detector.CircleSectionDetector attribute)

 	(odl.tomo.geometry.detector.Detector attribute)

 	(odl.tomo.geometry.detector.Flat1dDetector attribute)

 	(odl.tomo.geometry.detector.Flat2dDetector attribute)

 	(odl.tomo.geometry.detector.FlatDetector attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	NearestInterpolation (class in odl.discr.discr_mappings)

 	negative() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	newtons_method() (in module odl.solvers.vector.newton)

 	nn_variants (odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	norm (odl.space.ntuples.FnCustomNorm attribute)

 	norm() (odl.diagnostics.operator.OperatorTest method)

 	

 	(odl.diagnostics.space.SpaceTest method)

 	(odl.discr.discretization.Discretization method)

 	(odl.discr.discretization.DiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.base_ntuples.FnWeightingBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.cu_ntuples.CudaFnConstWeighting method)

 	(odl.space.cu_ntuples.CudaFnCustomDist method)

 	(odl.space.cu_ntuples.CudaFnCustomInnerProduct method)

 	(odl.space.cu_ntuples.CudaFnCustomNorm method)

 	(odl.space.cu_ntuples.CudaFnNoWeighting method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaFnVectorWeighting method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.FnConstWeighting method)

 	(odl.space.ntuples.FnCustomDist method)

 	(odl.space.ntuples.FnCustomInnerProduct method)

 	(odl.space.ntuples.FnMatrixWeighting method)

 	(odl.space.ntuples.FnNoWeighting method)

 	(odl.space.ntuples.FnVector method)

 	(odl.space.ntuples.FnVectorWeighting method)

 	normal (odl.tomo.geometry.detector.Flat1dDetector attribute)

 	

 	(odl.tomo.geometry.detector.Flat2dDetector attribute)

 	

 	not_equal() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	ntuple (odl.discr.discretization.DiscretizationVector attribute)

 	

 	(odl.discr.discretization.RawDiscretizationVector attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	Ntuples (class in odl.space.ntuples)

 	NtuplesBase (class in odl.space.base_ntuples)

 	NtuplesBaseUFuncs (class in odl.util.ufuncs)

 	NtuplesBaseVector (class in odl.space.base_ntuples)

 	NtuplesUFuncs (class in odl.util.ufuncs)

 	NtuplesVector (class in odl.space.ntuples)

O

 	

 	one() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.Ntuples method)

 	OpDomainError

 	operator

 	Operator (class in odl.operator.operator)

 	OperatorComp (class in odl.operator.operator)

 	OperatorLeftScalarMult (class in odl.operator.operator)

 	OperatorLeftVectorMult (class in odl.operator.operator)

 	OperatorPointwiseProduct (class in odl.operator.operator)

 	OperatorRightScalarMult (class in odl.operator.operator)

 	OperatorRightVectorMult (class in odl.operator.operator)

 	operators (odl.operator.pspace_ops.BroadcastOperator attribute)

 	

 	(odl.operator.pspace_ops.ReductionOperator attribute)

 	

 	OperatorSum (class in odl.operator.operator)

 	OperatorTest (class in odl.diagnostics.operator)

 	OpNotImplementedError

 	OpRangeError

 	OptionalArgDecorator (class in odl.util.vectorization)

 	OpTypeError

 	order

 	

 	(odl.discr.discr_mappings.FunctionSetMapping attribute)

 	(odl.discr.discr_mappings.LinearInterpolation attribute)

 	(odl.discr.discr_mappings.NearestInterpolation attribute)

 	(odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	(odl.discr.discr_mappings.PointCollocation attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	out-of-place evaluation

 	out_dtype (odl.space.fspace.FunctionSet attribute)

 	

 	(odl.space.fspace.FunctionSpace attribute)

 	out_shape_from_array() (in module odl.util.vectorization)

 	out_shape_from_meshgrid() (in module odl.util.vectorization)

P

 	

 	Parallel2dGeometry (class in odl.tomo.geometry.parallel)

 	Parallel3dAxisGeometry (class in odl.tomo.geometry.parallel)

 	Parallel3dGeometry (class in odl.tomo.geometry.parallel)

 	ParallelGeometry (class in odl.tomo.geometry.parallel)

 	params (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.detector.CircleSectionDetector attribute)

 	(odl.tomo.geometry.detector.Detector attribute)

 	(odl.tomo.geometry.detector.Flat1dDetector attribute)

 	(odl.tomo.geometry.detector.Flat2dDetector attribute)

 	(odl.tomo.geometry.detector.FlatDetector attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	Partial (class in odl.solvers.util.partial)

 	PartialDerivative (class in odl.discr.discr_ops)

 	partition (odl.discr.discr_mappings.FunctionSetMapping attribute)

 	

 	(odl.discr.discr_mappings.LinearInterpolation attribute)

 	(odl.discr.discr_mappings.NearestInterpolation attribute)

 	(odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	(odl.discr.discr_mappings.PointCollocation attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.detector.CircleSectionDetector attribute)

 	(odl.tomo.geometry.detector.Detector attribute)

 	(odl.tomo.geometry.detector.Flat1dDetector attribute)

 	(odl.tomo.geometry.detector.Flat2dDetector attribute)

 	(odl.tomo.geometry.detector.FlatDetector attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry attribute)

 	(odl.tomo.geometry.geometry.Geometry attribute)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry attribute)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry attribute)

 	(odl.tomo.geometry.parallel.ParallelGeometry attribute)

 	parts (odl.set.pspace.ProductSpaceVector attribute)

 	PerAxisInterpolation (class in odl.discr.discr_mappings)

 	perpendicular_vector() (in module odl.tomo.util.utility)

 	phantom() (in module odl.util.phantom)

 	pitch (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	pitch_offset (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	PointCollocation (class in odl.discr.discr_mappings)

 	points() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.discr.partition.RectPartition method)

 	power() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	power_method_opnorm() (in module odl.operator.oputils)

 	

 	preload_first_arg() (in module odl.util.utility)

 	PrintIterationPartial (class in odl.solvers.util.partial)

 	PrintNormPartial (class in odl.solvers.util.partial)

 	PrintTimingPartial (class in odl.solvers.util.partial)

 	prod() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	prod_op (odl.operator.pspace_ops.BroadcastOperator attribute)

 	

 	(odl.operator.pspace_ops.ReductionOperator attribute)

 	ProductSpace (class in odl.set.pspace)

 	ProductSpaceOperator (class in odl.operator.pspace_ops)

 	ProductSpaceUFuncs (class in odl.util.ufuncs)

 	ProductSpaceVector (class in odl.set.pspace)

 	ProgressBar (class in odl.util.testutils)

 	ProgressRange (class in odl.util.testutils)

 	proximal_convexconjugate_l1() (in module odl.solvers.advanced.proximal_operators)

 	proximal_convexconjugate_l2() (in module odl.solvers.advanced.proximal_operators)

 	proximal_nonnegativity() (in module odl.solvers.advanced.proximal_operators)

 	proximal_zero() (in module odl.solvers.advanced.proximal_operators)

 	pyfftw_call() (in module odl.trafos.fourier)

 	pywt_coeff_to_array() (in module odl.trafos.wavelet)

R

 	

 	rad2deg() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	range

 	

 	(odl.discr.discr_mappings.FunctionSetMapping attribute)

 	(odl.discr.discr_mappings.LinearInterpolation attribute)

 	(odl.discr.discr_mappings.NearestInterpolation attribute)

 	(odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	(odl.discr.discr_mappings.PointCollocation attribute)

 	(odl.discr.discr_ops.Divergence attribute)

 	(odl.discr.discr_ops.Gradient attribute)

 	(odl.discr.discr_ops.Laplacian attribute)

 	(odl.discr.discr_ops.PartialDerivative attribute)

 	(odl.operator.default_ops.ConstantOperator attribute)

 	(odl.operator.default_ops.IdentityOperator attribute)

 	(odl.operator.default_ops.InnerProductOperator attribute)

 	(odl.operator.default_ops.LinCombOperator attribute)

 	(odl.operator.default_ops.MultiplyOperator attribute)

 	(odl.operator.default_ops.ResidualOperator attribute)

 	(odl.operator.default_ops.ScalingOperator attribute)

 	(odl.operator.default_ops.ZeroOperator attribute)

 	(odl.operator.operator.FunctionalLeftVectorMult attribute)

 	(odl.operator.operator.Operator attribute)

 	(odl.operator.operator.OperatorComp attribute)

 	(odl.operator.operator.OperatorLeftScalarMult attribute)

 	(odl.operator.operator.OperatorLeftVectorMult attribute)

 	(odl.operator.operator.OperatorPointwiseProduct attribute)

 	(odl.operator.operator.OperatorRightScalarMult attribute)

 	(odl.operator.operator.OperatorRightVectorMult attribute)

 	(odl.operator.operator.OperatorSum attribute)

 	(odl.operator.pspace_ops.BroadcastOperator attribute)

 	(odl.operator.pspace_ops.ComponentProjection attribute)

 	(odl.operator.pspace_ops.ComponentProjectionAdjoint attribute)

 	(odl.operator.pspace_ops.ProductSpaceOperator attribute)

 	(odl.operator.pspace_ops.ReductionOperator attribute)

 	(odl.space.fspace.FunctionSet attribute)

 	(odl.space.fspace.FunctionSetVector attribute)

 	(odl.space.fspace.FunctionSpace attribute)

 	(odl.space.fspace.FunctionSpaceVector attribute)

 	(odl.space.ntuples.MatVecOperator attribute)

 	(odl.tomo.backends.stir_bindings.BackProjectorByBinWrapper attribute)

 	(odl.tomo.backends.stir_bindings.ForwardProjectorByBinWrapper attribute)

 	(odl.tomo.operators.ray_trafo.RayBackProjection attribute)

 	(odl.tomo.operators.ray_trafo.RayTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransform attribute)

 	(odl.trafos.fourier.DiscreteFourierTransformInverse attribute)

 	(odl.trafos.fourier.FourierTransform attribute)

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	(odl.trafos.wavelet.WaveletTransform attribute)

 	(odl.trafos.wavelet.WaveletTransformInverse attribute)

 	RawDiscretization (class in odl.discr.discretization)

 	RawDiscretizationVector (class in odl.discr.discretization)

 	RayBackProjection (class in odl.tomo.operators.ray_trafo)

 	RayTransform (class in odl.tomo.operators.ray_trafo)

 	real (odl.discr.lp_discr.DiscreteLpVector attribute)

 	

 	(odl.space.fspace.FunctionSpaceVector attribute)

 	(odl.space.ntuples.FnVector attribute)

 	RealNumbers (class in odl.set.sets)

 	reciprocal() (in module odl.trafos.fourier)

 	

 	(odl.util.ufuncs.CudaNtuplesUFuncs method)

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	reciprocal_space() (in module odl.trafos.fourier)

 	Rectangle() (in module odl.set.domain)

 	RectPartition (class in odl.discr.partition)

 	

 	ReductionOperator (class in odl.operator.pspace_ops)

 	RegularGrid (class in odl.discr.grid)

 	remainder() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	ResidualOperator (class in odl.operator.default_ops)

 	restriction

 	

 	(odl.discr.discretization.Discretization attribute)

 	(odl.discr.discretization.RawDiscretization attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	restriction() (odl.discr.discretization.DiscretizationVector method)

 	

 	(odl.discr.discretization.RawDiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	results (odl.solvers.util.partial.StorePartial attribute)

 	right_shift() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	rint() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	Rn() (in module odl.space.ntuples)

 	rotation_matrix() (odl.tomo.geometry.conebeam.CircularConeFlatGeometry method)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry method)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry method)

 	(odl.tomo.geometry.geometry.AxisOrientedGeometry method)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry method)

 	(odl.tomo.geometry.geometry.Geometry method)

 	(odl.tomo.geometry.parallel.Parallel2dGeometry method)

 	(odl.tomo.geometry.parallel.Parallel3dAxisGeometry method)

 	(odl.tomo.geometry.parallel.Parallel3dGeometry method)

 	(odl.tomo.geometry.parallel.ParallelGeometry method)

 	run_tests() (odl.diagnostics.operator.OperatorTest method)

 	

 	(odl.diagnostics.space.SpaceTest method)

S

 	

 	samples() (in module odl.diagnostics.examples)

 	scalar_examples() (in module odl.diagnostics.examples)

 	ScalingOperator (class in odl.operator.default_ops)

 	schemes (odl.discr.discr_mappings.PerAxisInterpolation attribute)

 	self_adjoint() (odl.diagnostics.operator.OperatorTest method)

 	Set (class in odl.set.sets)

 	set (odl.discr.partition.RectPartition attribute)

 	set_zero() (odl.discr.discretization.DiscretizationVector method)

 	

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.set.space.LinearSpaceVector method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.fspace.FunctionSpaceVector method)

 	(odl.space.ntuples.FnVector method)

 	sets (odl.set.sets.CartesianProduct attribute)

 	shape (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.discretization.DiscretizationVector attribute)

 	(odl.discr.discretization.RawDiscretization attribute)

 	(odl.discr.discretization.RawDiscretizationVector attribute)

 	(odl.discr.grid.RegularGrid attribute)

 	(odl.discr.grid.TensorGrid attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.discr.partition.RectPartition attribute)

 	(odl.space.base_ntuples.FnBase attribute)

 	(odl.space.base_ntuples.FnBaseVector attribute)

 	(odl.space.base_ntuples.NtuplesBase attribute)

 	(odl.space.base_ntuples.NtuplesBaseVector attribute)

 	(odl.space.cu_ntuples.CudaFn attribute)

 	(odl.space.cu_ntuples.CudaFnVector attribute)

 	(odl.space.cu_ntuples.CudaNtuples attribute)

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.ntuples.Fn attribute)

 	(odl.space.ntuples.FnVector attribute)

 	(odl.space.ntuples.Ntuples attribute)

 	(odl.space.ntuples.NtuplesVector attribute)

 	(odl.tomo.geometry.detector.CircleSectionDetector attribute)

 	(odl.tomo.geometry.detector.Detector attribute)

 	(odl.tomo.geometry.detector.Flat1dDetector attribute)

 	(odl.tomo.geometry.detector.Flat2dDetector attribute)

 	(odl.tomo.geometry.detector.FlatDetector attribute)

 	shepp_logan() (in module odl.util.phantom)

 	shifts (odl.trafos.fourier.FourierTransform attribute)

 	

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	show() (odl.discr.discretization.DiscretizationVector method)

 	

 	(odl.discr.discretization.RawDiscretizationVector method)

 	(odl.discr.lp_discr.DiscreteLpVector method)

 	(odl.set.pspace.ProductSpaceVector method)

 	(odl.space.base_ntuples.FnBaseVector method)

 	(odl.space.base_ntuples.NtuplesBaseVector method)

 	(odl.space.cu_ntuples.CudaFnVector method)

 	(odl.space.cu_ntuples.CudaNtuplesVector method)

 	(odl.space.ntuples.FnVector method)

 	(odl.space.ntuples.NtuplesVector method)

 	show_discrete_data() (in module odl.util.graphics)

 	ShowPartial (class in odl.solvers.util.partial)

 	sign (odl.trafos.fourier.DiscreteFourierTransform attribute)

 	

 	(odl.trafos.fourier.DiscreteFourierTransformInverse attribute)

 	(odl.trafos.fourier.FourierTransform attribute)

 	(odl.trafos.fourier.FourierTransformInverse attribute)

 	sign() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	signbit() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	simple_operator() (in module odl.operator.operator)

 	sin() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	sinh() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	size (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.discretization.DiscretizationVector attribute)

 	(odl.discr.discretization.RawDiscretization attribute)

 	(odl.discr.discretization.RawDiscretizationVector attribute)

 	(odl.discr.grid.RegularGrid attribute)

 	(odl.discr.grid.TensorGrid attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.discr.partition.RectPartition attribute)

 	(odl.set.pspace.ProductSpace attribute)

 	(odl.set.pspace.ProductSpaceVector attribute)

 	(odl.space.base_ntuples.FnBase attribute)

 	(odl.space.base_ntuples.FnBaseVector attribute)

 	(odl.space.base_ntuples.NtuplesBase attribute)

 	(odl.space.base_ntuples.NtuplesBaseVector attribute)

 	(odl.space.cu_ntuples.CudaFn attribute)

 	(odl.space.cu_ntuples.CudaFnVector attribute)

 	(odl.space.cu_ntuples.CudaNtuples attribute)

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.ntuples.Fn attribute)

 	(odl.space.ntuples.FnVector attribute)

 	(odl.space.ntuples.Ntuples attribute)

 	(odl.space.ntuples.NtuplesVector attribute)

 	(odl.tomo.geometry.detector.CircleSectionDetector attribute)

 	(odl.tomo.geometry.detector.Detector attribute)

 	(odl.tomo.geometry.detector.Flat1dDetector attribute)

 	(odl.tomo.geometry.detector.Flat2dDetector attribute)

 	(odl.tomo.geometry.detector.FlatDetector attribute)

 	skip_if_no_benchmark() (in module odl.util.testutils)

 	skip_if_no_cuda() (in module odl.util.testutils)

 	skip_if_no_largescale() (in module odl.util.testutils)

 	

 	skip_if_no_pyfftw() (in module odl.util.testutils)

 	skip_if_no_pywavelets() (in module odl.util.testutils)

 	space (odl.discr.discretization.DiscretizationVector attribute)

 	

 	(odl.discr.discretization.RawDiscretizationVector attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.set.pspace.ProductSpaceVector attribute)

 	(odl.set.space.LinearSpaceVector attribute)

 	(odl.space.base_ntuples.FnBaseVector attribute)

 	(odl.space.base_ntuples.NtuplesBaseVector attribute)

 	(odl.space.cu_ntuples.CudaFnVector attribute)

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.fspace.FunctionSetVector attribute)

 	(odl.space.fspace.FunctionSpaceVector attribute)

 	(odl.space.ntuples.FnVector attribute)

 	(odl.space.ntuples.NtuplesVector attribute)

 	spaces (odl.set.pspace.ProductSpace attribute)

 	SpaceTest (class in odl.diagnostics.space)

 	sparse_meshgrid() (in module odl.discr.grid)

 	sqrt() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	square() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	squeeze() (odl.discr.grid.RegularGrid method)

 	

 	(odl.discr.grid.TensorGrid method)

 	(odl.set.domain.IntervalProd method)

 	src_position() (odl.tomo.geometry.conebeam.CircularConeFlatGeometry method)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry method)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry method)

 	(odl.tomo.geometry.geometry.DivergentBeamGeometry method)

 	src_radius (odl.tomo.geometry.conebeam.CircularConeFlatGeometry attribute)

 	

 	(odl.tomo.geometry.conebeam.HelicalConeFlatGeometry attribute)

 	(odl.tomo.geometry.fanbeam.FanFlatGeometry attribute)

 	start() (odl.util.testutils.ProgressBar method)

 	steepest_descent() (in module odl.solvers.scalar.gradient)

 	StepLength (class in odl.solvers.scalar.steplen)

 	stir_projector_from_file() (in module odl.tomo.backends.stir_bindings)

 	StirVerbosity (class in odl.tomo.backends.stir_bindings)

 	StorePartial (class in odl.solvers.util.partial)

 	stride (odl.discr.grid.RegularGrid attribute)

 	Strings (class in odl.set.sets)

 	submarine_phantom() (in module odl.util.phantom)

 	subtract() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	sum() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	surface() (odl.tomo.geometry.detector.CircleSectionDetector method)

 	

 	(odl.tomo.geometry.detector.Detector method)

 	(odl.tomo.geometry.detector.Flat1dDetector method)

 	(odl.tomo.geometry.detector.Flat2dDetector method)

 	(odl.tomo.geometry.detector.FlatDetector method)

 	surface_deriv() (odl.tomo.geometry.detector.CircleSectionDetector method)

 	

 	(odl.tomo.geometry.detector.Detector method)

 	(odl.tomo.geometry.detector.Flat1dDetector method)

 	(odl.tomo.geometry.detector.Flat2dDetector method)

 	(odl.tomo.geometry.detector.FlatDetector method)

 	surface_measure() (odl.tomo.geometry.detector.CircleSectionDetector method)

 	

 	(odl.tomo.geometry.detector.Detector method)

 	(odl.tomo.geometry.detector.Flat1dDetector method)

 	(odl.tomo.geometry.detector.Flat2dDetector method)

 	(odl.tomo.geometry.detector.FlatDetector method)

T

 	

 	T (odl.discr.discretization.DiscretizationVector attribute)

 	

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.operator.default_ops.InnerProductOperator attribute)

 	(odl.set.pspace.ProductSpaceVector attribute)

 	(odl.set.space.LinearSpaceVector attribute)

 	(odl.space.base_ntuples.FnBaseVector attribute)

 	(odl.space.cu_ntuples.CudaFnVector attribute)

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.fspace.FunctionSpaceVector attribute)

 	(odl.space.ntuples.FnVector attribute)

 	tan() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	tanh() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	TensorGrid (class in odl.discr.grid)

 	timeit() (in module odl.util.testutils)

 	Timer (class in odl.util.testutils)

 	

 	to_lab_sys() (in module odl.tomo.util.utility)

 	to_local_sys() (in module odl.tomo.util.utility)

 	true_divide() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

 	true_ndim (odl.set.domain.IntervalProd attribute)

 	trunc() (odl.util.ufuncs.CudaNtuplesUFuncs method)

 	

 	(odl.util.ufuncs.DiscreteLpUFuncs method)

 	(odl.util.ufuncs.NtuplesBaseUFuncs method)

 	(odl.util.ufuncs.NtuplesUFuncs method)

 	(odl.util.ufuncs.ProductSpaceUFuncs method)

U

 	

 	ufunc (odl.discr.discretization.DiscretizationVector attribute)

 	

 	(odl.discr.discretization.RawDiscretizationVector attribute)

 	(odl.discr.lp_discr.DiscreteLpVector attribute)

 	(odl.set.pspace.ProductSpaceVector attribute)

 	(odl.space.base_ntuples.FnBaseVector attribute)

 	(odl.space.base_ntuples.NtuplesBaseVector attribute)

 	(odl.space.cu_ntuples.CudaFnVector attribute)

 	(odl.space.cu_ntuples.CudaNtuplesVector attribute)

 	(odl.space.ntuples.FnVector attribute)

 	(odl.space.ntuples.NtuplesVector attribute)

 	uniform_discr() (in module odl.discr.lp_discr)

 	uniform_discr_frompartition() (in module odl.discr.lp_discr)

 	uniform_discr_fromspace() (in module odl.discr.lp_discr)

 	uniform_partition() (in module odl.discr.partition)

 	uniform_partition_fromgrid() (in module odl.discr.partition)

 	uniform_partition_fromintv() (in module odl.discr.partition)

 	

 	uniform_sampling() (in module odl.discr.grid)

 	uniform_sampling_fromintv() (in module odl.discr.grid)

 	UniversalSet (class in odl.set.sets)

 	UniversalSpace (class in odl.set.space)

 	update() (odl.util.testutils.ProgressBar method)

 	uspace (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.discretization.RawDiscretization attribute)

 	(odl.discr.lp_discr.DiscreteLp attribute)

V

 	

 	vector (odl.space.cu_ntuples.CudaFnVectorWeighting attribute)

 	

 	(odl.space.ntuples.FnVectorWeighting attribute)

 	vector() (in module odl.space.space_utils)

 	

 	(odl.diagnostics.space.SpaceTest method)

 	vector_assign() (odl.diagnostics.space.SpaceTest method)

 	vector_copy() (odl.diagnostics.space.SpaceTest method)

 	vector_equals() (odl.diagnostics.space.SpaceTest method)

 	vector_examples() (in module odl.diagnostics.examples)

 	

 	vector_is_valid() (odl.space.cu_ntuples.CudaFnVectorWeighting method)

 	

 	(odl.space.ntuples.FnVectorWeighting method)

 	vector_set_zero() (odl.diagnostics.space.SpaceTest method)

 	vector_space() (odl.diagnostics.space.SpaceTest method)

 	vectorization

 	vectorize (class in odl.util.vectorization)

 	volume (odl.set.domain.IntervalProd attribute)

W

 	

 	wavelet_decomposition3d() (in module odl.trafos.wavelet)

 	wavelet_reconstruction3d() (in module odl.trafos.wavelet)

 	WaveletTransform (class in odl.trafos.wavelet)

 	WaveletTransformInverse (class in odl.trafos.wavelet)

 	weighted_dist() (in module odl.space.ntuples)

 	weighted_inner() (in module odl.space.ntuples)

 	weighted_norm() (in module odl.space.ntuples)

 	weighting (odl.discr.discretization.Discretization attribute)

 	

 	(odl.discr.lp_discr.DiscreteLp attribute)

 	(odl.space.cu_ntuples.CudaFn attribute)

 	(odl.space.ntuples.Fn attribute)

 	weights (odl.set.pspace.ProductSpace attribute)

 	

 	with_metaclass() (in module odl.util.utility)

 	wrap_reduction_base() (in module odl.util.ufuncs)

 	wrap_reduction_discretelp() (in module odl.util.ufuncs)

 	wrap_reduction_productspace() (in module odl.util.ufuncs)

 	wrap_ufunc_base() (in module odl.util.ufuncs)

 	wrap_ufunc_discretelp() (in module odl.util.ufuncs)

 	wrap_ufunc_ntuples() (in module odl.util.ufuncs)

 	wrap_ufunc_productspace() (in module odl.util.ufuncs)

Z

 	

 	zero() (odl.discr.discretization.Discretization method)

 	

 	(odl.discr.lp_discr.DiscreteLp method)

 	(odl.set.pspace.ProductSpace method)

 	(odl.set.space.LinearSpace method)

 	(odl.set.space.UniversalSpace method)

 	(odl.space.base_ntuples.FnBase method)

 	(odl.space.cu_ntuples.CudaFn method)

 	(odl.space.fspace.FunctionSpace method)

 	(odl.space.ntuples.Fn method)

 	(odl.space.ntuples.Ntuples method)

 	

 	ZeroOperator (class in odl.operator.default_ops)

 Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

 _images/math/7f930591eaeb8fa89cb72e25d2290bf51eaa73f8.png
Alz)]i =)25 Aijlz;j)

_images/math/960e487974bfe71d67e0bdd0ea913f61f7a26b45.png

_images/math/bc86e467503744f0b86468e9dd72b0f22a77ff05.png

_images/math/f36c24046d10557abef26b893c3922cdc3302e14.png

_images/math/fd942626916e929964e99bfeca7c19cedefc5003.png
A — A

_images/math/70b753d358a3b55b6e2e71e83b6d939ffd0d6a39.png
|0 # [|]]c.0

limy,_, o ||al|c.

_images/math/9a00a50f7699b417e620f47851893b49d8e34fa8.png
. 1 2
prox, [f](z) = arg min f(y) + o—llz — yll3

_images/math/8659700e6646cd91bc02c32affaa5ec046ee9935.png

_images/math/f4eec3d34339274824db65fdcf3da18d0e5b22b7.png

_images/math/6b191253a81d562cd577fd10dd8bc872f9d77cf6.png
dir,y) =>dlz, z)+d(zy)

_images/math/83e06e0494e113e6b557488d632f09fb125d9252.png
n-1

fi= 3 et

_images/math/a6004ff5ed1d5402c25a4c599d2098f647af6cd6.png
—o /2

_images/math/7f2c98bf462cba6083cf18483ba9510e3c2fd3d3.png
vy >)

_images/math/787ef8897f85416cae83d74ef5630a9c5973d996.png

_images/math/27f3ae7113b7b7f971dc52743c50368f80c8d639.png

_images/math/c0a88240cf5408b1feeb31f76ddacf8e1df3440a.png

_images/math/40052a218749b0f50b525e533dc7e365861c8768.png
o
fon=——+— (no shift),
st o

s =~ (shift)

_images/math/c11d603aafd12720752af28a3f73bf6d2307e405.png
[lr@pdz= [1o a

_images/math/fc01a4836dba9ed7fe995c47650178fd45cad786.png
ad >)

_images/math/833c9b2ca2331155d52f7f46bee1d0d255d8f1af.png
On = 1/1/1+ 297y

Tatt = OnTn

Ot = Op/Op

_images/math/11a85f3c69ae6702cb1d99d3de451913b8f84c04.png

_images/math/b3833a3d4ba1f39de5bbb53b3a9bc23f68e75b39.png
dlzr,y) =dly, x)

_images/math/e0b5f1d1ff7f6fd964a048b37a4370d48ea3b9e6.png

_images/math/aa588f0ddec08d6a57d11eeae0d80a0b775e63f5.png
max min (Kz,y)y +Glz) — F(y),

_images/math/ede3486372631a33f5d0f481fa20b01619bc7c48.png

_images/math/769f806dab962332d1f4c42ccd4f7ba05fee055f.png
hit

_images/math/2234ae59c3952f92a239e40b369cc1d27636ae36.png

_images/math/6199a79c281b47cf87f382593a515beb266333b8.png

_images/math/bd87dafadaa240c1853ebc85f2a4eddf7207efa7.png
A=A X - XA,

_images/math/2383a69a5b4b04f7d62a0b0cf16d18f5ea55bb0e.png

_images/math/3ac8fa348f8ba3b645cec96a8797103c2c170bb6.png
prox, ;(z)

_images/math/ad96590c710f9e20f2b649b3c5a2b22f923e107d.png
|.||2 = (-,-)1/2

_images/math/c31b396cfa03b2f27fa2d8d5759959f8b367aa55.png
|z|| =0

_images/math/4757aa63ce17937d0206279a9611394510793f8c.png
F'(z") = sup {z%) — Flz)

_images/math/b405659e2355aca5799a1bf5ceeecbadc16fe65b.png
A =41 X -+ X A,

_images/math/7fc8e11d3ed6439d7e346f0e01a075d36cc251ad.png
r— Vflr)e &

_images/math/b5740ff28c7347a3b956833aaa8069649285ab4e.png

_images/math/3fffa33f04a62913b74cae8118769088b77effc4.png
T +z,y) = (r,y) +(z,y)

_images/math/91dd10dd54d60724f0e7394ac058b1a96038c03d.png

_images/math/9f5a7711ff9b816f6311b40717a37c66192ed149.png

_images/math/97c39505c6c69245e92fdafb043d1757b13dd835.png
p € |1, 2]

_images/math/4a5b5747edf77b3a51aca3058669953e9f8c0ec7.png
rg <

R |

_images/math/8ca70d1aa01fea4214046b3c8cc6715b57b855c6.png

_images/math/409757b00168d7ee741fe1f112fba3f7c0649aa0.png
AB|(z) = A(Bx)

_images/math/c0d532c35ca545300e228cd83ad19b0a46259985.png
LR — C([0,1]),

L(f):=I(f:-).

_images/math/6928ceb29fbbef7e3775cecf2f9e31d9ab526175.png

_images/math/c5c4ada535bd0ba79845ec72113b8e98eac233e0.png

_images/math/5a0dcc1c4cf78013788f68191bbf1bbde27d042c.png
K| =
|| = max {||Kz|| : |lz]| <1}

_images/math/d270bf8feeeb657248a9aa6a88ca0134883fa235.png
(T1,...,7,) EX

_images/math/f576548c1bf887080367782bbca9fff5ca7a8f92.png
Sun(§) = (2m) " sine(¢/2),
Finl€) = (2m)V2sinc?(¢ /2)

_images/math/135867a96747d8a44cacac7ec27587978a967168.png
| K ||“oT < 1

_images/math/8830fc5c8f6f79a90443e663f44bc13593c699e9.png
Tpil = Tf + QT

_images/math/d9debff7c5b42de84464a20a1c9106717bc15419.png
Yn41 = proze[F" |(yn + 0 KIn)
Tnt1 = proz;[G)(zn — 7K Ynsa)

Fpil = Tpitl + O(Tpey —)

_images/math/d311e4171fec4798421c8caed627a685064695c9.png
1
A[H](z) = arg min H(y) + —|lz — y|?
proz.[H](z) = arg min W) + -l =yl

_images/math/48b7ca80198c24d6eaea0540ca68a528ace49bf3.png
Yo € Y

search.html

 Navigation

 		
 index

 		odl »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

_images/math/59cf9fb9945cd1ad5e4addd6ae6dd93146925b9b.png
oplr,y) =1+

_images/math/4b2f86413eb03ebbcc1b0ffd8f4669fa28e3575b.png

_images/math/c3c08496f07567285212e468b173bea9ca153fab.png
L)

_images/math/434a2fffe7ba0054b8bfa40fca6781ea2d0cf55b.png
M) fi + M) fist,

T

_images/math/02ab2b3e973f5ed972932219f61bc6cd420fac1a.png

_images/math/b52ac0ed9a759866f0d0ed818b9fedfd7cadf735.png
min G(z) + F(Kz)

_images/math/78213ad99c773f2b66edec69d20c5847d32270a5.png

_images/math/4a14099a72b6f51dd041f27c984541788a2c33a6.png

_images/math/f026aecf11ec7f6141ab863f260d395f94b10f51.png

_images/math/8bdd41f2e7cf58c4010dd229492e957e58aa16a9.png

_images/math/2bcc65482aa8e15cd4c9e9f2542451fb4e971a91.png

_images/math/bf694b1663786079dc75106b7f0db76d3ad9fd58.png

_images/math/3eca8557203e86160952e1c0f735f7417f3285b1.png

_images/math/38a5d44f79d8eac6cae796354ce5df17fec36901.png
pros,[g)(z) = (prosca,[f](5 +) ~b)

_images/math/22eb54ed8747c42ecf312cb5fdde263dbec8ccb7.png
Rx
Ev F" S5 X,

_images/math/b23819015b186cf62f5663b6769e6b51f5a16884.png
f:Ad =K

_images/math/d981341f26e00c7420c7b11502aaa7f3acee8de9.png
n-1

fi = F&) = slst)e ™8 Y fieihsto gnibin

rrd

_images/math/d09e097fd3827ece21f450b7ccf90265998b1e0c.png
T € [T, Tis1)

_images/math/6611362060d8f99d04b9c5a9703c807b00b298ac.png

_images/math/daf10df80f930f9ab997124cec985b1141c84b9b.png
[a)|c.00 1= €||@]|nc

_images/math/21b4b0165a5ce9e1a2ca38f76bb75e7a391b7758.png
T — 1

_images/math/bf4570c817e8148e93a6c088a5dde5826d307a69.png

_images/math/26305d1ea923f51007c740c800c4efa582e7d447.png
n-l
fi=>_ ek =0, n—1
ot

_images/math/9927a24e8e9d76ff69e65b64e86c7be63e092708.png

_images/math/1da0211abb169a49d4dc021be09bf10c00d67f16.png
A+ Blr = Ar + Br

_images/math/374b9db74b3e3f1fe43ebbfc3a771e65a5e6d0ba.png

_images/math/33f20393cb2868c3da5c8762aba708a389cef964.png

_images/math/4cd8b25dce47674b56e15da5356f9e4f7c1b18bc.png

_images/math/f8523d1e41e618c31e04389ed9c45aabeb501661.png
(a,b) := b"a

_images/math/0acafa529182e79b4f56165ec677554fba7fcf98.png

_images/math/1322297878136414add65bc8c8f8d1fa3ded9227.png
L' (R)

_images/math/ff310382ab3664e375f3a71250641d2b35bece83.png
s{; = s§p + 27/n

_images/math/8aeaec9ebbdb49455a5823c53b0811324efcd2af.png

_images/math/e61eb8893ebe6dec3fbd4a0f37088505307ec616.png
Y = [0, +-oc

_images/math/64ee0e0c8c20df06f68a057e8359b98ef5078cca.png

_images/math/ad8e2c4e940e7043d0c4a3beb2a1c3e498ce1a7e.png
S >0

_images/math/eae7c3be6f46a68871a2302b0454adae201a1d98.png
A R" - R, Alxr

_images/math/8cf4b67fd076b187d00422ed46e200cecc0182f8.png
Tk = 10 + ks,

o+ jo.

_images/math/9e64589411fa160717e64fab8e800a15c308e59f.png

_images/math/886409200ed023ff68606fa99a3734599fdf49d8.png

_modules/index.html

 Navigation

 		
 index

 		odl »

 All modules for which code is available

		odl.diagnostics.examples

		odl.diagnostics.operator

		odl.diagnostics.space

		odl.discr.discr_mappings

		odl.discr.discr_ops

		odl.discr.discretization

		odl.discr.grid

		odl.discr.lp_discr

		odl.discr.partition

		odl.operator.default_ops

		odl.operator.operator

		odl.operator.oputils

		odl.operator.pspace_ops

		odl.set.domain

		odl.set.pspace

		odl.set.sets

		odl.set.space

		odl.solvers.advanced.chambolle_pock

		odl.solvers.advanced.proximal_operators

		odl.solvers.findroot.newton

		odl.solvers.iterative.iterative

		odl.solvers.scalar.gradient

		odl.solvers.scalar.steplen

		odl.solvers.util.partial

		odl.solvers.vector.newton

		odl.space.base_ntuples

		odl.space.cu_ntuples

		odl.space.fspace

		odl.space.ntuples

		odl.space.space_utils

		odl.tomo.backends.astra_cpu

		odl.tomo.backends.astra_cuda

		odl.tomo.backends.astra_setup

		odl.tomo.backends.stir_bindings

		odl.tomo.geometry.conebeam

		odl.tomo.geometry.detector

		odl.tomo.geometry.fanbeam

		odl.tomo.geometry.geometry

		odl.tomo.geometry.parallel

		odl.tomo.operators.ray_trafo

		odl.tomo.util.utility

		odl.trafos.fourier

		odl.trafos.wavelet

		odl.util.graphics

		odl.util.numerics

		odl.util.phantom

		odl.util.testutils

		odl.util.ufuncs

		odl.util.utility

		odl.util.vectorization

 © Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

_images/pull_button.png
#Admin | © Unwatch i Pull Roquost L1 Down!

Downloads (0) ~ Wiki (1) Graphs

math/solvers/advanced/proximal_operators.html

 Navigation

 		
 index

 		odl »

Proximal Operators

Definition

Let [image: f] be a proper convex function mapping the normed space [image: X]
to the extended real number line [image: (-\infty, +\infty]]. The proximal
operators of the functional [image: f] is mapping from [image: X\mapsto X]. It
is denoted as [image: \mathrm{prox}_\tau[f](x)] with [image: x\in X] and defined by

[image: \mathrm{prox}_\tau[f](x) = \arg\;\min_{y\in Y}\;f(y)+\frac{1}{2\tau} \|x-y\|_2^2]

The shorter notation [image: \mathrm{prox}_{\tau\,f}(x)]) is also common.

Properties

Some properties which are useful to create or compose proximal operators:

Separable sum

If [image: f] is separable across variables, i.e. [image: f(x,y)=g(x)+h(y)],
then

[image: \mathrm{prox}_\tau[f](x, y) = (\mathrm{prox}_\tau[g](x), \mathrm{prox}_\tau[h](y))]

Post-composition

If [image: g(x)=\alpha f(x)+a] with [image: \alpha > 0], then

[image: \mathrm{prox}_\tau[g](x) = \mathrm{prox}_{\alpha\tau}[f](x)]

Pre-composition

If [image: g(x)=f(\beta x+b)] with [image: \beta\ne 0], then

[image: \mathrm{prox}_\tau[g](x) = \frac{1}{\beta} (\mathrm{prox}_{\beta^2\tau}[f](\beta x+b)-b)]

Moreau decomposition

This is also know as the Moreau identity

[image: x = \mathrm{prox}_\tau[f](x) + \frac{1}{\tau}\,\mathrm{prox}_{1/\tau}[f^*] (\frac{x}{\tau})]

where [image: f^*] is the convex conjugate of [image: f].

Convec conjugate

The convex conjugate of [image: f] is defined as

[image: f^*(y) = \sup_{x\in X} \langle y,x\rangle - f(x)]

where [image: \langle\cdot,\cdot\rangle] denotes inner product. For more
on convex conjugate and convex analysis see [R1970]
or Wikipedia [https://en.wikipedia.org/wiki/Convex_conjugate].

For more details on proximal operators including how to evaluate the
proximal operator of a variety of functions see [PB2014].

Indicator function

Indicator functions are typically used to incorporate constraints. The
indicator function for a given set [image: S] is defined as

[image: \mathrm{ind}_{S}(x) =\begin{cases}
0 & x \in S \\ \infty &
x\ \notin S
\end{cases}]

Special indicator functions

Indicator for a box centered at origin and with width [image: 2 a]:

[image: \mathrm{ind}_{\mathrm{box}(a)}(x) = \begin{cases}
0 & \|x\|_\infty \le a\\
\infty & \|x\|_\infty > a
\end{cases}]

where [image: \|\cdot\|_\infty] denotes the maximum-norm.

 © Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

_images/branch_dropdown.png
Source Commits Network Pull Requests (0)

Switch Branches (2) v| SwichTags (0) Branch List

my-fancy-feature
amed axes for data management
placehoider ¢

_images/forking_button.png
© Unwatch 4 Fork (i Pull Request

Issues (0) Downloads (0) Wiki(1) Graphs

_images/math/3723ed53ca6fd37b4ba725f84af223bb8a0c3966.png

_images/discr.png
RX

%

FX

math/solvers/advanced/chambolle_pock.html

 Navigation

 		
 index

 		odl »

Chambolle-Pock algorithm

The general problem

The Chambolle-Pock (CP) algorithm, as proposed in [CP2011a], is a first
order primal-dual hybrid-gradient method for non-smooth convex optimization
problems with known saddle-point structure

[image: \max_{y \in Y} \min_{x \in X}\;\langle K x, y\rangle_Y + G(x) - F^*(y) ,]

where [image: X] and [image: Y] are finite-dimensional Hilbert spaces with inner product
[image: \langle\cdot,\cdot\rangle] and norm [image: \|.\|_2 = \langle\cdot,\cdot\rangle^{1/2}],
[image: K] is a continuous linear operator [image: K:X\mapsto Y].
[image: G:X\mapsto[0,+\infty]] and [image: F^*:Y\mapsto[0,+\infty]]
are proper, convex, lower-semicontinuous functionals, and [image: F^*] is the
convex (or Fenchel) conjugate of F, see below.

The saddle-point problem is a primal-dual formulation of the following
primal minimization problem

[image: \min_{x \in X}\;G(x) + F(K x)\;.]

The corresponding dual maximization problem is

[image: \max_{y \in Y}\;G(-K^* x) - F^*(y)]

with [image: K^*] being the adjoint of the operator [image: K].

The convex conjugate is a mapping from a normed vector space [image: X] to its
dual space [image: X^*]. It is defined as

[image: F^*(x^*) = \sup_{x\in X}\; \langle x^*,x\rangle - F(x)\;,]

with [image: x^*\in X^*] and [image: \langle\cdot,\cdot\rangle] denotes the dual
pairing. For Hilbert spaces, which are self-dual, we have [image: X=X^*] and
[image: \langle\cdot,\cdot\rangle] is the inner product. The convex conjugate
is always convex, and if F is convex, proper, and lower semi-continuous we
have [image: F=(F^*)^*] . For more details see [Roc1970].

The algorithm

The CP algorithm basically consists of alternating a gradient ascend in
the dual variable [image: y] and a gradient descent in the primal variable
[image: x]. Additionally an over-relaxation in the primal variable is performed.

Initialization

Choose [image: \tau > 0], [image: \sigma > 0], [image: \theta \in [0,1]],
[image: x_0 \in X], [image: y_0 \in Y], [image: \bar x_0 = x_0]

Iteration

For [image: n > 0] update [image: x_n], [image: y_n], and [image: \bar x_n] as
follows

[image: y_{n+1} = prox_\sigma[F^*](y_n + \sigma K \bar x_n)

x_{n+1} = prox_\tau[G](x_n - \tau K^* y_{n+1})

\bar x_{n+1} = x_{n+1} + \theta (x_{n+1} - x_n)]

Proximal operator

The proximal operator, [image: prox_\tau[H](x)], of the functional [image: H] with step size parameter
[image: tau] is defined as

[image: prox_\tau[H](x) = \arg\;\min_{y\in Y}\; H(y) + \frac{1}{2 \tau} \|x - y\|_2^2]

Step sizes

A simple choice of step size parameters is [image: \tau=\sigma<
\frac{1}{\|K\|}] with the induced operator norm

[image: \|K\| = \max_{x\in X}\;\{\|K x\|:\|x\| < 1\}]

For [image: \|K\|^2\sigma\tau < 1] converge of the algorithm should be
guaranteed.

Acceleration

If [image: G] or [image: F^*] is uniformly convex, convergence can be
accelerated using variable step sizes.

Replace [image: \tau\rightarrow\tau_n], [image: \sigma\rightarrow\sigma_n],
and [image: \theta\rightarrow\theta_n] and choose
[image: \tau_0\sigma_0\|K\|^2 < 1] and [image: \gamma>0] . After the update of
the primal variable [image: x_{n+1}] and before the update of the relaxation
variable [image: \bar x_{n+1}] use the following update scheme for relaxation
and step size parameters as

[image: \theta_n = 1 / \sqrt{1 + 2 \gamma \tau_n}

\tau_{n+1} = \theta_n \tau_n

\sigma_{n+1} = \sigma_n / \theta_n]

Instead of choosing step size parameters preconditioning techniques can
be employed, see [CP2011b]. In this case the steps tau and sigma are
replaced by symmetric and positive definite matrices
[image: \tau\rightarrow T], [image: \sigma\rightarrow\Sigma] and convergence
should hold for [image: \| \Sigma^{1/2}\,K\, T^{1/2}\|^2 < 1].

For more on proximal operators and algorithms see [PB2014]. The
following implementation of the CP algorithm is along the lines of
[Sid+2012].

 © Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

math/solvers/solvers.html

 Navigation

 		
 index

 		odl »

Solvers

Section about solvers for optimization problems in ODL and related topics.

		Chambolle-Pock algorithm
		The general problem

		The algorithm

		Proximal Operators
		Definition

		Properties

		Indicator function

 © Copyright 2015-2016, ODL development group, KTH.
 Created using Sphinx 1.3.5.

_images/math/f32c40d79c4049d1cebd3feef541bd00dc8bb0df.png
prox_|[f](z)

_images/math/626c1e5f5813ef8857103e28e14e0190b6b9b30d.png
X Ap

_images/math/10f57558ac203980df1f868852978de2adb92c0c.png
rr e X"

_images/math/65868d23a5bfe5b3b2d819386b19c14fa36af134.png

_images/math/09eae30bf2753297afa1e82bccc3ba2faebf862f.png
flx,

y) = glz)+ hly)

_images/math/1e09648610740b58687711f87c0e4ca1ecebb234.png

_images/math/427d3a402740954f0c382376cebbaa622adfc97c.png
op([z,y]) =+ vy

_images/math/beaf9fead3dbadecb411f82de06a9afad5a78c5a.png
C: X —-R",
C(f) == (f(x1),..., flzn))

_images/math/eedf1e97eb00191bb7bd863747b2343d556582ed.png
(a,b). = cb"a

_images/math/d48973114711ab0000e1fb442b1224852d5ad08a.png
minge x| A(z) — y||5

_images/math/2623d55b1760a35694c4eaa7362c6cb118a18a38.png

_images/math/6d90d747f91106a8a1bec232823b52df8d36b9f6.png

_images/math/68a45f4f778cb1713989fc95537efe07383c3357.png

_images/math/ae8256056b22b1113584d903fb66e63390cec6c1.png

_images/math/0001d02b63ede2fe3219e05a7cd09c82ae6298b6.png

_images/math/c0a4ba05cd6d2f6c0b09d958b50a875ff9635e0d.png

_images/math/fc02550e88eda5015ab247b603a860c094a15874.png
rT¢ = 30 Twbs

_images/math/d80efcd342f6a350c624896ce573ce92d66446e4.png
a|lw .o = ||Wal|x

_images/math/4040abfbe718aff741f26b7eeb5319b46feb33f2.png
A A1 X Ay — 2

_images/math/0599b15f9f80684c89195cda75b0d394d07c5055.png

_images/math/c6678a4ba7e940dd5d085c512c75b2bfdeb11ee7.png

_images/math/3e7a38150f278287b8c12533e4838d13b9cdab9d.png
prox [H](z)

_images/math/3744e0cedf81f34732acb32e260d89dc72fb981f.png
dr,y) =0&1

_images/math/6859317dd1b439cef34131bcd4bafee8393444e0.png

_images/math/c1b23a948874b1b4d107d85853c930be928e60e2.png
Loy, <

_images/math/c5b4ce22e0592e40ca9e372a3b3e605f83540068.png
0zl <a
0 ||zlle > a

indox(a) () {

_images/math/f11489b7aa370acec2a7cf1cd91c2525157f7655.png
Tre1 = T —w OA(x)* (Alzg) —y)

_images/math/8a7aca681ae2cc096ed340ca2cda0b0c36959e75.png
wh N

D1

_images/math/a581f053bbfa5115f42c13094857cdd12a37ec49.png

_images/math/f50f20eb9414ec67602fe10933d8333f35a172b2.png

_images/math/03c865062fd9faf11ae64929ff7019ee918da28e.png

_images/math/6842c178e13c50f60bd763eef9a3861f3bef8a8a.png

_images/math/e4cd49f80d94daf13696cd74a9b7c6df5356eb59.png
Fl&) = sdlsty)e ™ Z JreT st ik
o

_images/math/f529900a391c3a4ceb980ca901c815b9cff105f8.png
(—oc, +0o¢

_images/math/33e1fa1658dccf2da9a806831db136df597100e6.png
@) |w,00

W © al|x

_images/math/b124ff74afb0914bb434e8fb849eb56d734412f8.png

_images/math/1af24252d6b651f6a34da53debfabd2d257ec70b.png
LP(IR)

_images/math/48f75e0b463f2fdb7fca9566cffdc439cae6967f.png

_images/math/411595288ea03589af8e0a2358037c7989dfb687.png
X = C([0,1])

_images/math/58a00b814158095df4bf23db63789b2aa30f4749.png
TiQ

_images/math/8634d5638cc2b24447d7d59a224f26d633d882e7.png

_images/math/db712c56c54418565b7aac18f8671db8a2069659.png

_images/math/193ba95c32b4d6388364ea72b7368cdb9bee0a1d.png
) 0 €S
mds(z):{m igs

_images/math/ae4ea3d66d618f2d97ec833cc61b2eb14ad2b151.png
min f(x)

_images/math/4bee6c8143f58f4fe181c0845298f4bd28cc61e1.png

_images/math/631f967313bcc335ae1aa4a6a404467540524e4c.png

_images/math/b54d51aa605098a3eb6f1076ede0e8dd25e0b608.png
r— Vflr)

_images/math/c7415c6919c2eb17b1ea36f0243079b59825ee89.png

_images/math/0f43f76e2bd5a1ec4f6ac5bef79b7b6b46c08c26.png
{N, ifl=
A
fegmin 0, else

_images/math/1ab1c055ef9beb498de39b38924649c993cf07b8.png

_images/math/c7bbb326e26716fbe7eb60b901b1ac00b385d4a2.png
ok(z) = ¢ (

T — T

_images/math/09971f03a171dbd15cf50048ca84dbf3ac87dd99.png
dlz,y) =0

_images/math/88a0c4b8e0305e266270affe9b30966eb5374718.png
T E X

_images/math/6dcde2a8040ee11db931cab3a0ea86a4df4c02d1.png
Tr € A X A

_images/math/49c9004003128cf15fb630bdb902a8cc05d9c6e1.png

_images/math/71dd5e70385d243ade1edf7a6487e517a5486dac.png

_images/math/10e009bdb83f96c5f47c58b34d5d4b12ef268d5b.png

_images/math/751d11b7123edf739660f5af841401124d99d145.png

_images/math/f62db6dad21a75641239641c9dc9fccde0dc655f.png
(sT,y) = s{T,y)

_images/math/28e003020d0ae96250b302d7d779c791f183f707.png

_images/math/63b2cff0d2c9ea37bf36005d3113a89588c71f62.png

_images/math/a5e22f62a89b22b9beaa27885f8b4ba40df1fe37.png
r=(r1,T9), 71 € X1. 19 € A

_images/math/ad7b41fd2f309b82dc6f7b1f04a3dd0131a2ba51.png
f'(y) = suply, x) — f(z)

_images/math/394775907e13c7b12d07e3710559024b024efab6.png
Aij 1 A =V

_images/math/659cb766eab170e95062e9e8e4cee89311295b9e.png

_images/math/dbb31926d523b7afca1431444c84d637a467f226.png
F: L*(R) — LI(R),

_images/math/1e87df73078d74295dc9a1f859cc23a82bee7c59.png
212 K
TV2|2 <
1

_images/math/354d0e19be8ce197128def2f8d63717d2ff511ad.png

_images/math/766a608ea200aa2dee7caeaa27a5718da14feb6a.png
3#0

_images/math/d56d732b25b2bd41267929bb151a1397661fb62a.png

_images/math/23f1b45408e5b4130c0f940fcbfcec54492cbdcd.png

_images/math/e9203da50e1059455123460d4e716c9c7f440cc3.png

_images/math/d01ba315a46d43f711a7b213f87682b9e1fe352a.png
1)

_images/math/425d86ba2f2979d75b7535c2bcf92c33ed6b285a.png

_images/math/8606c09f4e0d78a0a7576c353c5e6f33f92cecfa.png
fau

_images/math/811a784aab74c4dfd870850f4cf99b3749bcb993.png

_images/math/8f096afea67d1a730dfa0755d45843a81a476764.png

_images/math/7d22e01281ea9addb8f015d74154aee990e7b058.png
|al|w ., := ||[W'Pal|,

_images/math/80a400ce2b171e2c738af7590e2aa44df6b39428.png

_images/math/cb9c4fcd822da64cc788f9184f5777abb5851da2.png

_images/math/009a89ab6931d2b10cb62af06d523e7abf5d19f4.png

_images/math/1145a78fbface07b806201c26c41bbcef4763398.png

_images/math/c1bd4cb4e3647c6b2356b7ccf2f52aeffedd1b61.png

_images/math/2c920ece2412721e325294a70f7dfa9417bca2de.png

_images/math/aa776c6b873b5b9aad569c9bb0e94df1816a8a9e.png
G: X — |0, 400

_images/math/24cdf250c53773f83cc16064cfaa2a4380564935.png
(a, b)w

_images/math/d32c78b759903e3f4bd4fd2ce0b86358f7500c5d.png

_images/math/5e7b991f0e25fe6a962c1c3aee936e64cf6caf87.png
1 >)

_images/math/e1a0d4d0052497f424b76fe8d113477c9d994044.png

_images/math/8305a1ff737d7c82636c29557804352a23327c11.png

_images/math/dad66084e260c67aebcdf8fb99380c4f96d28047.png
prox,[gl(z) = prox,,[f]|(x)

_images/math/b1737416b573196f45186693cf358755d9fca325.png
Foh(©) = 3 fieskd(sng)e ™

_images/math/a8211bc2dab4ab052a0ebe1ef9065fadcdedee1c.png

_images/math/a10a3c6efc0137b02bd00d1294243afef50cbcda.png

_images/math/be3bcf8a19a928999cfb2020a2f51a96c93fbcb0.png

_images/math/7840464ef9099bb36dba4aa48ec535661d9f4aa8.png

_images/math/b92c09a649305a0aef3239729d93cdf941e0e5cf.png

_images/math/8b3fee92bd31e7ef75753578015b35913cfc3d35.png

_images/math/d88a468d97230eec9fb4365b6e7ae44e8dcf2485.png
[pd

_images/math/109fdcbf92fd2098dc29dc695e55a2327b0e1cd2.png
if —1<z<1.
else.

_images/math/1bead82d8d1206387d6ba525119ffddc69167294.png
L2(IR)

_images/math/b018f9153661cd702305aecc28713fd9705e7cb3.png

_images/math/ff1afb37b9945e03d34dd3261a27a6a73c3f6eec.png

_images/math/a4390c1b33e28c68101f5b5a07c095592e1d109d.png
|z + y|| < ||z|| + ||y

_images/math/ecad8e36b8bdef5203f0f5cc26af2128f819e0be.png

_images/math/762f88b09c24f1a6c06f18f7220e8508d3428a22.png

_images/math/bd576cc83590c0c68c57babe45cc1b9de9a83d24.png
Tooo || K||* < 1

_images/math/dd75c350e050ba9bf69a892bc795fd0e5a602ba9.png
n-1

> finla)

rard

_images/math/7b67cd599f14566844ed67822d7f68067dae3739.png

_images/math/f4ef393ffec74ae55fe7d341acdb5e57be435294.png
I C{l,

,nt

_images/math/ba85cf66978d656db4b06c743f684fa5e19552d6.png

_images/math/d68cefc381c35b9008b55bd41f07a0c252c1a1d6.png
w a

_images/math/e98ebe2aeef1b8488b960e417e31c60a5c4674f1.png

_images/math/7fde62d9680131fb96168c4aef616cd4240e83c2.png
max G(=K"z) — F'(y)

_images/math/ad4e111832f1d7459840772c9765c8f365018c04.png

_images/math/1049ac322f2822809ad10c937189f19a705955f6.png

_images/math/188c175aac0a8a9c22499336711b5d7256407254.png

_images/math/f6b13e123f8a67d5c0dfa6d8cc5fba69cef1003d.png

_images/math/3310babd90dcb849fd8efbf1e6f7eff916b97cd2.png

_images/math/03907e2cc139edd6efa5d01014c0e9c8d5c2ae18.png

_images/math/a4e16ca0c0bea866cc75dcd6309288dbc756e733.png
v >0

_images/math/437561b7b25ed4e11907e8058bd8f898bbf1db89.png
i il
om & iom

_images/math/2e28a57cf3ae06088e766103a78a5dbddfd5c174.png
ry << ---

_images/math/6e0269fc8c1e36c6d05426bc6c1af3449aaf3c46.png

_images/math/dd760f9b15d5339b544020a6c8521b2778c41e84.png

_images/math/413f8a8e40062a9090d9d50b88bc7b551b314c26.png

_images/math/2da38602aa4eb554b85d15d616ea3e19b6251a10.png

_images/math/1eb2504cfc2deb202d47dd146fb4a4d5ffc223e8.png
0 <w<2/||A|

_images/math/5e8a1f3b46cf50528c94a924292f279aaf741d13.png
DA)=(A.F" . Ry.Ex)

_images/math/b4fe682df21b0d9f51c57b0cd213b854651c0d86.png

_static/file.png

_static/up-pressed.png

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/comment.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_images/math/b0c0e4c208b5886ba94ba6103a3348f43c359700.png
if —1/2<z<1/2

bun(7) else,

_images/math/d00b0e1fe9a7a031c38e9b1e5329271a53fbc0ec.png
o — D

_images/math/fa34489cf430b7630b30f28b2eb050e2489e3523.png

_images/math/c308403f64254670a363e208ceeaea4beec9bd44.png

_images/math/5885d7c102ef464ebeb35431d3eee182efd5a576.png
I

_images/math/616a4aff97ce41b2d9157462be1ff84364137a26.png

_images/math/bd8c5043534230b6c4ef6b777c81b8f9c52baf9a.png

_images/math/ef2db68e4671e5b57d5b62377455b793056e3c9d.png

_images/math/56b7584a667881455a0abf0976eec6eaeb2e6ee7.png
r— I(f:x)

_images/math/45e127e2636ad6329011fbd26d74e54135790479.png
Tnil

_images/math/1341fea1948134b3e368d2d8dc26437ac1222eda.png
prox,[fl(z,y) = (prox,[g](z), prox, [h](y))

_images/math/93762de92ffc4444f3129417a8225afa3c2e8091.png

_images/math/ad59b6e24a4a00ac621801f8d7513d68be654ab5.png

_images/math/af826e35421d21492427cda4a69232aec98ccd4a.png

_images/math/481411c1b58c7509674a8ed3dc8d004e4aa4554c.png
0 — t,

_images/math/7f3c061cb44418bbc6366903e913f4ae3fd1ec91.png
Vi A = A

_images/math/b3954ae0009aaa7142b8a94fcffa64a3efcaafdf.png
felRn"

_images/math/1ca301b3e26e9005747e160d08485c13f2471a84.png
|al|c., := c'P||al,

_images/math/23181b16f1d51011464f52f975b5c477ebd66ed2.png

_images/math/1a7bca608e35149431145e6ae8de97c15101c626.png
T >)

_images/math/822647513cb759e334673aa5986a560d8d979191.png
TE A

_images/math/49b8662a7233adc84551ec493568becdccbafac6.png

_images/math/b452808c7626c4477d094b32ee1267ae11a7edd5.png

_images/math/1b83f58a84a8c077290eb0b5af5247ccb0d6b207.png

_images/math/d4a66ce51a4406854a33dc17f9b6bc9e0a49c6eb.png
(0,1

_images/math/e77f2f19998e710ca89b29e406a643b4cecbbfd7.png

_images/math/dfd7657ae1ee3db63005bbc7ae8d977a44babfc7.png
|alw.p == ||[w'P @]|,

_images/math/9249dce28f6f530623d8e9cc18ea20606cdce930.png
r e (0,1

_images/math/8590f65888a855397357ec21632f912e37ff55fe.png

_images/math/0e154998003cfc278f08dc96371848b75ea42fd9.png

